Announcements

• Homework 9 is available, Due March 11.
• Course grade based on top 8 of 9 homeworks. All weighted equally.
• Remaining lectures
 • Optimization to linear programming and beyond
Dimension Reduction

• A key problem in working with large scale data sets
 • Can we reduce representation size at the expense of a small error
Warmup for dimension reduction for R^n

- Consider the distance function $D(x,y) = 0$ if $x = y$, $D(x,y) = 1$ if $x \neq y$
- Suppose we have a domain U and want to answer distance queries between a set of n elements
- Natural solution is to use $\log_2 U$ bits to describe the elements
- Can we use less space if we want to approximately answer distance queries

Scenario: We have a database of objects (e.g. people), and a field with domain U (e.g. favorite movie) – we are interested in reducing the space required to store the field info and to answer the query of whether or not X and Y have the same favorite movie.
Of course this is going to be hashing

• Choose a good hash function \(h: U \rightarrow 2^{32} \)
• Let \(f_1(x) = h(x) \mod 2 \)
• 1 bit representation
 • If \(x = y \), then \(f_1(x) = f_1(y) \)
 • If \(x \neq y \), then \(\Pr[f_1(x) = f_1(y)] \leq \frac{1}{2} \)
 • Property preserved with probability at least 50%
• Repeat with \(k \) independent has functions \(h_1, \ldots, h_k \)
 • If \(x = y \), then \(f_i(x) = f_i(y) \) for all \(i = 1, \ldots, k \)
 • If \(x \neq y \), then \(\Pr[f_i(x) = f_i(y) \text{ for all } i = 1, \ldots, k] \leq 2^{-k} \)
• To achieve error of \(\delta \), we need to use \(k = \lceil \log_2 1/\delta \rceil \)
Random Projections for L_2 Distance in \mathbb{R}^N

- Johnson-Lindenstrauss Transform
 - Extensions of Lipschitz mappings into a Hilbert space, William Johnson and Joram Lindenstrauss, 1984
 - Pure mathematics result that crossed over to Computer Science

- Project from \mathbb{R}^N to a random \mathbb{R}^K dimensional subspace where K is $O(\varepsilon^{-2} \log N)$ and distances are preserved to a factor of $1+\varepsilon$
 - In practice, $K \approx 100$
Projections

• Projection onto a line
• Inner Product
• If \(b \) is a unit vector than \(a \cdot b \) gives the position of \(a \) when projected onto \(b \)
• Project \([4, -1, 3]\) onto \([2, 1, 1]\)

\[
\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n
\]

\[
\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta,
\]
Gaussian Distribution

• $N(\mu, \sigma^2)$ – Normal distribution with mean μ and variance σ^2
• X_1 and X_2 are independent random variables with distribution $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ then $X_1 + X_2$ has distribution $N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

\[
f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2}
\]

$\mu = 0$ and $\sigma = 1$

$\varphi(x) = \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}$
Aside: Generating Gaussians

- Box-Muller methods generates a pair of independent Gaussian RVs from two random points from [0,1)
- Mapping of unit square to independent Gaussians
- Many languages have a Gaussian generator (Matlab, Python, Java)
- Web sites will generate them for you

Suppose U_1 and U_2 are independent samples chosen from the uniform distribution on the unit interval $(0, 1)$. Let

$$Z_0 = \sqrt{-2 \ln U_1} \cos(2\pi U_2)$$

and

$$Z_1 = \sqrt{-2 \ln U_1} \sin(2\pi U_2).$$

Then Z_0 and Z_1 are independent random variables with a standard normal distribution.
Random Projection

• Objects are points in n dimensional Euclidean space \mathbb{R}^n
• Choose random vector $r = (r_1, \ldots, r_n) \in \mathbb{R}^n$
• Real valued function $f_r : \mathbb{R}^n \rightarrow \mathbb{R}$

$$f_r(x) = \langle x, r \rangle = \sum_{j=1}^{n} x_j r_j$$

• Random linear combination of components of x
Unbiased Estimator of Squared L$_2$ Distance

• For x, y in \mathbb{R}^n, $(f_r(x) - f_r(y))^2$ is an unbiased estimator of $|x - y|^2$

• Fix x, y in \mathbb{R}^n

$$f_r(x) - f_r(y) = \sum_{j=1}^{n} x_j r_j - \sum_{j=1}^{n} y_j r_j = \sum_{j=1}^{n} (x_j - y_j) r_j$$

• r_j is a Gaussian with mean zero and variance 1, $(x_j - y_j) r_j$ is a Gaussian with mean zero and variance $(x_j - y_j)^2$

• Right-hand side is a Gaussian with mean zero and variance

$$\sum_{j=1}^{n} (x_j - y_j)^2 = \|x - y\|_2^2$$
• By definition $\text{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^2)$, so $\text{Var}(X) = \mathbb{E}(X^2)$ when $\mathbb{E}(X) = 0$

• Taking X as the random variable $f_r(x) - f_r(y)$

$$\mathbb{E} \left[(f_r(x) - f_r(y))^2 \right] = \|x - y\|_2^2$$

• Estimator of the squared L_2 distance between x and y
Independent Trials

• Pick d vectors r_1, \ldots, r_d
• Each vector is drawn i.i.d. from a standard Gaussian
• Given points x, y, we get d independent estimates of $|x-y|^2$
• “One can figure out exactly how large d needs to be to achieve a target approximation”

For a set of k points in n dimensions, to preserve all $k(k-1)/2$ interpoint Euclidean distances up to a $1 \pm \epsilon$ factor, set $d = \Theta(\epsilon^{-2} \log k)$
Johnson-Lindenstrauss Transform

- JL transform maps from \mathbb{R}^n to \mathbb{R}^d, where d is selected based on desired accuracy.
- The JL transform is represented as a $d \times n$ matrix A where each of the dn entries is chosen i.i.d. from a standard Gaussian distribution.
- Mapping from n vectors to d vectors is defined $x \rightarrow Ax / \sqrt{d}$.
- $1/\sqrt{d}$ factor scales to be an average over d estimates.
D. Achlioptas (2003). Similar results hold if matrix entries are chosen uniformly from \{-1, 1\} or from \{-\sqrt{3}, 0, \sqrt{3}\} with probability 1/6, 2/3, 1/6 respectively.

Proof:

\[\Pr \left[X = (1 + \varepsilon)^2 \right] = \Pr \left[\exp(2X) \exp \left(1 + \varepsilon^2 \right) \right] < E(\exp(2X)) \exp \left(-4(1 + \varepsilon^2) \right) \]

Since \(\{X_{ij}\}_{ij} \) are i.i.d. we have

\[E(\exp(2X)) = \prod_{ij} E(\exp(2X_{ij})) \]

where passing from (8) to (9) uses that the \(\{X_{ij}\}_{ij} \) are independent, while passing from (9) to (10) uses that they are identically distributed. Thus, for any \(\epsilon > 0 \)

\[\Pr \left[X = (1 + \varepsilon)^2 \right] < (\prod_{ij} E(\exp(2X_{ij})))^{1/2} \exp \left(-4(1 + \varepsilon^2) \right) \]

Substituting (6) in (11) we get (12). To obtain the bound we set the derivative in (12) with respect to \(\varepsilon \) to 0. This gives \(\varepsilon = \sqrt{2} / 2 \). Substituting this value of \(\varepsilon \) we get (13) and series expansion yields (14).

\[\Pr \left[X = (1 + \varepsilon)^2 \right] = \left(\frac{1}{2} - \frac{\sqrt{2}}{2} \varepsilon \right) \exp \left(-\varepsilon^2 \right) \]

\[= \left(\frac{1}{2} \varepsilon^2 - \frac{\sqrt{2}}{2} \varepsilon \right) \]

Thus, \(E(\exp(2X)) < (1/2) \exp(-\sqrt{2} \varepsilon^2) \) for \(\varepsilon = (\sqrt{2} - 2)/2 \), as desired. \(\Box \)
Applications

• High dimensional data sets
 • Facebook
 • Friend neighborhood
 • Stories followed
 • Biochemistry
 • Candidate compounds for pharmaceuticals
• Youtube
 • Videos watched
• Phone metadata
 • Numbers called
Range queries

- Queries such as “k-Nearest Neighbors”, all points within distance B, count points within distance B
- Standard approach – reduce dimension and search using k-D trees*
- Results subject to errors by factors of $1 \pm \epsilon$
- k-Nearest Neighbors
 - Given query point y, return k points within $(1+\epsilon)B$ of y, where B is the k-NN distance from y
- Points with distance B
 - Given query point y, return a set of points which contains all points within distance $(1-\epsilon)B$ of y and no point of distance greater than $(1+\epsilon)B$ of y

* Different k
k-means clustering

• Given S, a set of n points in \(\mathbb{R}^m \), find k representative points in \(\mathbb{R}^m \) that best partition the data into clusters

• Application – use these points for classification – a new point finds it nearest neighbor among the k points. Rocchio Algorithm.

• Partition the space into Voronoi cells

• k-clustering of S is a partition into k subsets
 • The cluster-variance is the sum of the squares of the distances of each point to the respective center of its cluster

• The k-means clustering of a set S is the k-clustering that minimizes the cluster-variance

• Finding the optimal k-means cluster is NP-Hard, but we will ignore that
Higher dimensional clustering

- It gets harder to draw!
- Same idea works in high dimensions

- Results show that k-means clustering can be done after dimension reduction, greatly improving performance of constructing and using clustering (at the expense of $1+\varepsilon$ error)

- Heuristic algorithms are used to construct a k-means clustering (with common confusion between the algorithm and the definition of clustering)
Lloyd’s Algorithm (Stuart Lloyd, Bell Labs, 1957)

• Iterative algorithm that (usually) converges to a good approximation.

• Pick an initial clustering

• Repeat until tired
 • Compute centers of clusters
 • Reassign points to closest center
Lloyd’s Algorithm

CS is a ClusterSet which associates points with clusters and maintains the centers of the clusters.

Methods

AddPoint(int i, int g);
MovePoint(int i, int g);
SetCenters();
Group(int i);
Center(int g);