CSEP 521: Dimension Reduction

Richard Anderson, March 2, 2021

‘\\ AN l" /
N \\\\; Il
\ \\\$\ \\\\‘-\\"l / Lw’/

Announcements

* Homework 9 is available, Due March 11.
* Course grade based on top 8 of 9 homeworks. All weighted equally.

* Remaining lectures
* Optimization to linear programming and beyond

Dimension Reduction

* A key problem in working with large scale data sets
* Can we reduce representation size at the expense of a small error

Warmup for dimension reduction for R"

* Consider the distance function D(x,y) =0ifx=vy, D(x,y)=1ifx#y

e Suppose we have a domain U and want to answer distance queries
between a set of n elements

* Natural solution is to use log, U bits to describe the elements

e Can we use less space if we want to approximately answer distance
queries

Scenario: We have a database of objects (e.g. people), and a field with domain U (e.g.
favorite movie) — we are interested in reducing the space required to store the field info
and to answer the query of whether or not X and Y have the same favorite movie.

Of course this is going to be hashing

* Choose a good hash function h: U — 232
* Let f,(x) = h(x) mod 2
* 1 bit representation
* If x =y, then f,(x) =f,(y)
* If x vy, then Pr[f,(x) =f,(y)] <%
* Property preserved with probability at least 50%

* Repeat with k independent has functions h,, ..., h,
* If x=y, thenf(x)=f(y) foralli=1,...,k
 If x#vy, then Pr[f(x) = f(y)foralli=1, ..., k] <2k

* To achieve error of 6, we need to use k = |_Iog2 1/6—|

Random Projections for L, Distance in R"

* Johnson-Lindenstrauss Transform

* Extensions of Lipschitz mappings into a Hilbert space, William Johnson and
Joram Lindenstrauss, 1984

* Pure mathematics result that crossed over to Computer Science

* Project from RN to a random R¥ dimensional subspace where K is
O(e log N) and distances are preserved to a factor of 1+¢

* |n practice, K=100

Projections |

/

. jecti n lin
Projection onto a line Al cos6

* Inner Product

. |f.b iS a unit v.e.ctor thana: b ab = b = arby +azhy -+ anb,
gives the position of a when i1

projected onto b
* Project [4,-1,3] onto [2, 1, 1] a-b = [al| |[b| cos,

0.4 5
0.35 1
0.2+
0.25 1
0.2 -
015 1
0.1 1
0.05

] - T T T T T T T T T 1
-5 4 3 -2 A 0 1 2 K] 4 5

Gaussian Distribution

Normal(0,1)

* N(u,02) — Normal distribution with
mean p and variance G2

X

T—p

1 _L(zky’

* X, and X, are independent random @)= 5t)

variables with distribution N(u,,c,?) :

and N(u,,0,2) then X, + X, has p=0ando=1 ,(z) = e T
distribution N(u,+ u,,0,%+ 0,2

9

Aside: Generating Gaussians

* Box-Muller methods generates
a pair of independent Gaussian
RVs from two random points
from [0,1)

* Mapping of unit square to
independent Gaussians

 Many languages have a
Gaussian generator (Matlab,
Python, Java)

* Web sites will generate them
for you

Suppose U4 and U, are independent samples chosen from the
uniform distribution on the unit interval (0, 1). Let

Zy = +/—2InU; cos(2nUs;)

Z1 = +/—2InUj sin(27U,).

Then Zy and Z4 are independent random variables with a
standard normal distribution.

Random Projection

* Objects are points in n dimensional Euclidean space R"
* Choose random vectorr=(r,, ..., r,) € R"

* Real valued function f, : R" > R
T

fo(x) = (x.1) =) a;r;

J=1

* Random linear combination of components of x

Unbiased Estimator of Squared L, Distance

* For x, yin R", (f.(x)—f,(y))?is an unbiased estimator of |x - y|?
* Fix X, y in R"

fr(x) § :1 Ty = § :J}T? — § Tj = Yj)r;
71=1
T is @ Gaussian with mean zero and variance 1, (x yJ)r IS @ Gaussian

with mean zero and variance (X —;)°

* Right-hand side is a Gaussian with mean zero and variance
T

D (wj—y;)? = x -yl

J=1

Cont.

* By definition Var(X) = E((X — E(X])?), so Var(X) = E(X?) when E(X) =0
* Taking X as the random variable f (x) —f (y)

E[(fr(x) = fr(¥)?] = Ix =yl

* Estimator of the squared L, distance between x and y

Independent Trials

* Pick d vectorsry, .. ., ry
 Each vector is drawn i.i.d. from a standard Gaussian
* Given points x, y, we get d independent estimates of |x-y|?

* “One can figure out exactly how large d needs to be to achieve a
target approximation”

For a set of k points in n dimensions, to preserve all
k(k-1)/2 interpoint Euclidean distancesuptoal t ¢
factor, setd = ©(s2 log k)

Johnson-Lindenstrauss Transform

e JL transform maps from R" to R9, where d is selected based on
desired accuracy

* The JL transform is represented as a dxn matrix A where each of the
dn entries is chosen i.i.d. from a standard Gaussian distribution

* Mapping from n vectors to d vectors is defined x — Ax / sqrt(d)
» 1/sqrt(d) factor scales to be an average over d estimates

Simplification

e D. Achlioptas (2003). Similar results hold if matrix entries are chosen uniformly
from {-1, 1} or from {-sqrt(3), O, sqrt(3)} with probability 1/6, 2/3, 1/6 respectively

e Proof:

Proof of Lemma 5.2. To prove (7) we observe that for any unit vector z, by (20) and (21),
Lemma 6.3. Let r.ry be i.i.d random variables having one of the two probability distributions given

E{Q(Ij‘] QE(Q[H'J*)QE(T‘L by Egs. (1) and (2) in Theorem 1.1
For any a,beR let ¢ = \/(a®> + b*)/2. Then for any MeR and all k =0,1, ...

E((M +ar; + br)¥) <E((M + cry + o)),

Proof of Lemma 5.1. We start with the upper tail. For arbitrary />0 let us write

Pr{S>{l +:,}IA—;] =Pr
¢

i
exp(hS) =exp (hl 1+ s.JJ)] while

: e 2 A 3
< EIexp(fﬁS})exp(—h{l + f,]i) E(T) = / ?Elp(-;.-f*z)(%)a;. ==
d Jow V2nm ‘ Proof. We first consider the case where rie{—1,+1}

If &> = b? then a = ¢ and the lemma holds with equality. Otherwise, observe that

Since {Q; };.:I are i.i.d. we have e To p;"z‘r!ﬂ (6) \\: ﬁrs‘;;bselr\'e\t;;u for :mycreall-\-alued r_;l1-rl'|dnm varic[lg;ﬁl :hnd _['cr all i sufh lh;n -) S
B re)pl(ﬁl N]Th I('Inun . ng] lmmmne onvergence Theorem ()) allows us to swap the E((M + et + cr2)™) — E((M + ar, + bra)™) = Tx
N expeclation with the sum and ge
E(exp(hS)) = E(1_[exp{th]) (8) P = where
1 . = (hUH)* o 2 3 2 2
. E(exp(hU%)) Js(E "k'] =3 —E(U¥) S =(M+26)™ £ 2M™ 4 (M —2e)* — (M +a+b)*
N = : =0 2% 2 2
= | Etexp(g))) 9) —(Mta—b* (M —a+b)® —(M—a—b)*
=1 So. below, we proceed as follows. Taking /1[0, d/2) makes the integral in (22) converge, giving . o R
ok us (23). Thus, for such &, we can apply the MCT to get (24). Now, applying (20) and (21)+(24) We will syo“llhf“ :;.-;(] for ‘m, R;ﬂ: ; ‘ ; % .
= (E(exp(h@})))". (10) gives (25). Applying the MCT once more gives (26). ISmce a*# b we can use the binomial theorem to expand every term other than 2M~* in Sy and
.. s ge
where passing from (8) to (9) uses that the {Q,-}J':‘:. are independent, while passing from (9) to (10} +z] . Fe % o
uses that they are identically distributed. Thus, for any £>0 E(exp(hT")) = [. ﬁexm—z.’:l)em (”7) di. (22) S =M ¢ Z(.)M:HDf_
k 2,0k k =1
PriS=(1+¢)5 <{E[e);p(hQ[J)]‘ e);p(—fﬁ“ + &}) (11)
d d 1 23) where
Substituting (6) in [_I 1) .we get [IJZJ, Tofoptimtz.e l}.le bou.nd we set ‘the derivative in (12) \w_[h 1 =2h/d o Di=(2¢) + (-2 —(a+8) — (a—b) — (—a+b) — (—a—b)
respect to i to 0. This gives /i = 5, <5. Substituting this value of /t we get (13) and series
expansion vields (14). =k w Observe now that for odd i, D; = 0. Moreover, we claim that Dy; =0 forall j=1. To see this claim
k = FE[T) (24) observe that (2a” +2b%) = (a +b)° + (a = b)” and that for all j=1 and v,y 20, (x+y)'zx/ +
Pr {SHI + ‘;)ﬂ_;] - (- lw , I) exp(_h“ N l:]%) (12) : yi. Thus, (207 = (20> + 26%) = [(a+b)’ + (a— b)V = (a + b)” + (a— b)” implying
d / i It
v — E f g k f o
; I e Py T 2k—j) = k=i py.
o =51 pom® (25) Sp=2M* + M py, = S MmNy =0
= {1+ &) exp(—g)) (13) 2w (O (; 2 / JZ,: 2 %
<e.‘{p(—§ f.‘,:,"’z - 4.‘,-’3}) . (14) N The proof for the case where r;e { —/3, 0, ++/3} is just a more cumbersome version of the proof
= = E(exp(hQ(x)7)) (26) above, so we omit it. That proof. though, brings forward an interesting point. If one tries to take

r; = 0 with probabi greater than 2/3, while maintaining that # has a range of size 3 and
variance 1, the lemma fails. In other words, 2/3 is tight in terms of how much probability mass we
can put to r; = 0 and still have the current lemma hold. O

Thus, E(exp(hQ?))<1/4/T—2h/d for he[0,d/2), as desired. 0

Applications

* High dimensional data sets

* Facebook
* Friend neighborhood
 Stories followed
* Biochemistry
* Candidate compounds for pharmaceuticals
* Youtube
* Videos watched
* Phone metadata
* Numbers called

—_———

Range queries {\

—_—— -

* Queries such as “k-Nearest Neighbors”, all points within distance B,
count points within distance B

e Standard approach — reduce dimension and search using k-D trees*
* Results subject to errors by factors of 1+¢

* k-Nearest Neighbors

* Given gquery pointy, return k points within (1+€)B of y, where B is the k-NN
distance fromy

e Points with distance B

e Given query pointy, return a set of points which contains all points within
distance (1- €)B of y and no point of distance greater than (1+ €)B of y

* Different k

k-means clustering

* Given S, a set of n points in R™, find k representative points in R™ that that
best partition the data into clusters

e Application — use these points for classification —a new point finds it
nearest neighbor among the k points. Rocchio Algorithm.

* Partition the space into Voronoi cells

* k-clustering of S is a partition into k subsets

* The cluster-variance is the sum of the squares of the distances of each point to the
respective center of its cluster

* The k-means clustering of a set S is the k-clustering that minimizes the
cluster-variance

* Finding the optimal k-means cluster is NP-Hard, but we will ignore that

Estimated number of cl

usters: 3

oo O
O p
| O
4= v O
AL B @ " oe
v
3= vy v
wvg W
0 D
O clusterl ° 0% 800
1=/ o cluster2 ctbgaﬁé@
@ac0 ©
v cluster 3 ngo o
O=| Y centroids DD ¢
1 [] [] [] []]
-2 -1 0 1 2 3
Clustering of Horsepower, MPG, and Displacement
200—
Z150—
2 .
]
B o
Z
©100—
o
@
50—, 4
10 Y, . 4 400
20 y X 301 N
Mo 30 y 200

100

Higher dimensional clustering

* It gets harder to draw!
* Same idea works in high dimensions

e Results show that k-means clustering can be done after dimension
reduction, greatly improving performance of constructing and using
clustering (at the expense of 1+€ error)

* Heuristic algorithms are used to construct a k-means clustering (with
common confusion between the algorithm and the definition of
clustering)

Lloyd’s Algorithm (Stuart Lloyd, Bell Labs, 1957)

* [terative algorithm that (usually) converges to a good approximation.

* Pick an initial clustering

* Repeat until tired
* Compute centers of clusters
* Reassign points to closest center

for (int i = 0; i < N; i++){
CS.AddPoint(i, i % K);

} Lloyd’s Algorithm

int count = 0;
while (count < TOO_LONG) {

CS.SetCenters () ; CS is a ClusterSet which associates points

bool moved = false: with clusters and maintains the centers of

for (int i = 0; i < N; i++){ the clusters.
int g = CS.Group (i) ;
double d min = dist(P[i], CS.Center(qg))

for (j = 0; j < K; j++){ Methods e .
if (§ == CS.Group(i)) AddPoint(int i, int g);
continue; MovePoint(int i, int g);
double d = dist(P[i], CS.Center(q)) SetCentersO'

if (d < d min
g(= j;_d_nii{n = d; Group(int i);
) Center(int g);
}
if (g !'= CS.Group(i)) {
CS.MovePoint (i, qg);
moved = true;
}
}

count++;
if (! moved)
break;

