2/24/2021

CSEP 521: Applied Algorithms Announcements
Lecture 16 — Document Similarity

Richard Anderson, February 25, 2021

P — A N 50 q
W &
4 e .

Topics Document Similarity
* Document similarity * Want to be able to identify documents that are “very close” to each
* MinHash other
« String similarity * Very large number of documents
« Edit Distance / Longest Common Subsequence * Individually pre-process documents
* Sharding strings + Save a small amount of data per document (sketch)
« Dimension reduction * Perform similarity tests based on sketch
Jaccard Similarity Representation scheme
far out in the uncharted backwaters of the
. unfashionable end of the western spiral arm of the
i * Tokenize document galaxy lies a small unregarded yellow sun
Jaccard (4, B) = :1 0B * Break document into shards (L, CrE I TEE e
- . . 2. outin the uncharted backwaters
° Hash each Sha’fj into a domain 3. inthe uncharted backwaters of
of size 264 (unsigned long) 4. the uncharted backwaters of the
* 5. uncharted backwaters of the unfashionable
Let X be the characteristic vector for A where x; is the multiplicity of item j * Treat as a bag of words 6. backwaters of the unfashionable end
isti i iplici item . R 7. of the unfashionable end of
and Y be the characteristic vector for B where y; is the multiplicity of item j. « Use Jaccard similarity measure e e et
9. unfashionable end of the western
3 minfrg, i) 10. end of the western spiral
laccard(A, B) = S —————= 11. of the western spiral arm
2 maxlr, uy) 12. the western spiral arm of
* In this application, we use bag of words without multiplicity

2/24/2021

Similarity testing

« Identify document pairs that have high similarity by doing pairwise
comparison

* Precompute hashes of shards — n shards for document of n tokens
« Cost of comparison is O(n)

* How to improve this: reduce the amount of information stored per
document

MinHash

« U is the domain (in this case, the hash of the shards, [0...2%%))
* Choose a random permutation 7 on U
e letAcU

* MinHash(A) = argmin, _, 7t(x)
* MinHash is the smallest element of A under the random permutation

U={a,b,cd e fgh,ij}
A={b,ceg}

B={cef}
n,=[a,cd,ijhbefgl]
n,=[j,i,8.¢b,h,ea,df]

An amazing result

: ANB
Pr[MinHash(A) = MinHash(B)] = fb’: = Jaccard(A, B)

Using the MinHash

« Identify document pairs where Jaccard(A,B) 2 0.95
* Run MinHash with k independent random permutations

* Number of times MinHash(A)=MinHash(B) is a good estimate of
Jaccard Similarity

* Compute the k MinHashes for each documents as a sketch
* Comparison of documents requires k comparisons

Similarity of Strings

* String edit distance — how many edits to convert S, into S,
« Edit operations: Add character, Remove character, (Change character)

BARTHOLEMEWSIMPSON — KRUSTYTHECLOWN

B|A|R|T|H|o|L |E|M|E|W|s|I [M|P|s|O]|N
A|R[T|[H|O|L|E|M[E|W[S|I [M|[P|S|O|N
R|T|H|Oo|L|E|M|E|W|s|I [M|P|s|O|N K+
K|R|T|H|O|L |E|M|E|W|s|I [M|P|s|O|N U+
K|R|u|T|H|O|L |E|M|E|W|s |1 [M|P|s|O|N S+
K|R|u|s|T|H|o|L |E|M|E|W|s |1 [mM|P|s|O|N Y+
K|R|u|s|T|v|H|o|L|E|M|E|W|s|I [mM|P|s|O|N T+
K|R|U|[S|T|Y|T|H|O|L|E|M|E|W|S|I [M|P|S|O]|N
K|R|{U|S|T|Y|T|H|L|E|M|E|W|[S|I [M|P|S|O]|N
K|R|U|[S|T|Y|T|H|E|M|E|W|S|I [M|P|S|O]|N
K|R|U|s|T|Y|T|H|E|E|W|s|I [M|P|s|O]|N
K|R|U|s|T|v|T|H|E|W|s|I [M|P|s|O|N C+
K|R|U|s|T|v|T|H|E|C|W|s|I [mM|P|s|O|N L+

2/24/2021

BARTHOLEMEWSIMPSON — KRUSTYTHECLOWN

K|R|U|s|T|Y|T|H|E|C|L|w|s]|I [m|P|s|O|N O+
K|R|U|s|T |y |T|H|E|C|L|O|W|s |I |mM[P|s|O|N
K|R|U|s|T|v|T|H|E|C|L|o|w|I [m|P|S|O|N
K|R|U|s|T|v|T|H|E|C|L|O|wW|m[P|S|O|N
K|R|U|s|T|v|T|H|E|C|L|O|wW|P|s|O|N
K|R|U|S|T|Y|T|H|E|C|L|O|W|S|O|N
K|R|U|S|T|Y|T|[H|E|C|L|O[W|O|N
K|R|U|S[T|Y|T|H|E|C|L|O|W|N

Longest Common Subsequence

* C=c;...c, is a subsequence of A=a,...a,, if C can be obtained by
removing elements from A (but retaining order)

« LCS(A, B): A maximum length sequence that s a
subsequence of both A and B

ocurranec attacggct bartholemewsimpson

occurrence tacgacca krustytheclown

Edit Distance and LCS

« String A has length n and B has length m
« Suppose that A is converted to B by removing k characters and adding
j characters
* Number of unchanged charactersis c=n—k=m-j
« Edit distance disk+j
en+m =2c +k+j=2c+d
ed=n+m-2c
* Minimizing the edit distance is maximizing the length of the common
sequence

LCS Optimization

*A=aja,..a,

*B=bjb,..b,

* Opt[j, k] is the length of LCS(a;a,...a;, b;b,...b)
* Optimization recurrence

Ifaj=by, Optljk]=1+0pt[j-1,k-1]
If a;# by, Opt[j,k] = max(Opt[j-1,k], Opt[jk-1])

Opt[j,0] = Opt[0,k] =0

Dynamic Programming Computation

NINININININ
NINININININ
NINININININ
NININININDN

Code to compute Opt[n, m]

for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++4)

if Al i]1==B[3]j1])
opt[i,j 1 = Opt[i-1, j-1 1 + 1;

else if (Opt[i-1, j 1 >= Opt[i, j-1 1)
opt[i, j 1 :=Opt[i-1, j 1;

else
opt[i, j 1 :=o0Opt[i, j-1];

2/24/2021

Computing the Longest Common Subsequence

LCS Performance

* Runtime is O(n?) for a pair of strings of length n
* Space requirement is O(n?)
* Which can be reduced to O(n) be reusing rows
* Recovering the actual LCS is more work, but can also be done in O(n) space

Experiment: compute the length of two random bit strings (alphabet size 2)

: 10000 Base 2 Length: 8096 Gamma: 0.8096 Runtime:00:00:01.86
: 20000 Base 2 Length: 16231 Gamma: 0.81155 Runtime:00:0(

30000 Base 2 Length: 24317 Gamma: 0.8105667 Runtim
40000 Base 2 Length: 32510 Gamma: 0.81275
50000 Base 2 Length: 40563 Gamma: 0.81126
: 60000 Base 2 Length: 48700 Gamma: 0.8116667 Runtime:00:(

EETz==Z

z:

: 300000 Base 2 Length: 243605 Gamma: 0.8120167 Runtime:00:28:07.32

Space efficient implementation

public int SpaceEfficientlCs() {
int n = strl.length;
int m = str2.Length;
int[] prevRow = new int[m + 1];
int[] currRow = new int[m + 1];

for (int § = 0; 3 <= m;)

prevRow[j]
for (int 1= 1; 1 <= n iss) {
currRow[0] = 6;
for (int j = 1; § <= m; j+
if (stra[i - 1] == str2[j - 1])

prevRow[j - 1] + 1;
else if (prevRou[j] >= currRou(j - 1])
currRow[3] = prevRow[3];

se
currRow[3] = currRow[3 - 11;
for (int J = 1; § <= m; ++)
prevRou[3] = currRow3];

}

return currRow[m];

String similarity

* Edit distance
* Advantages — measure of distance between strings
* Flexibility in edit operation and weighting

« Disadvantages

« Relatively inefficient: O(n?), heuristics may help for large strings or looking for
similarity

* Requires looking at the entire string

String similarity with shards

* Same basic idea as with documents

« Consider alphabets with a small number of characters, e.g., {a, c, t, g}
* Take shards as being strings of length k

* kamultiple of 32 would make sense for packing into long ints

* Hashing and minhash sketches apply as for documents
« Domain characteristics may be important

* Mutation rate / distribution in sequences

Coming next: Dimension reduction for R"

« Consider the distance function D(x,y) =0if x =y, D(x,y) =1ifx#y

* Suppose we have a domain U and want to answer distance queries
between a set of n elements

* Natural solution is to use log, U bits to describe the elements

« Can we use less space if we want to approximately answer distance
queries

Of course this is going to be hashing

* Choose a good hash function h: U — 232
* Let f,(x) = h(x) mod 2
« 1 bit representation
* Ifx=y, thenf,(x) = f,(y)
* If x#y, then Prfy(x) = f,(y)] < %
* Property preserved with probability at least 50%
* Repeat with k independent has functions h, .. ., h,
* Ifx=y, then f(x) =fi(y) foralli=1, .. k
« Ifx#y, then Prlf(x) = f(y) foralli=1,.. . k] <2
 To achieve error of §, we need to use k = "IogZ 1/6—|

2/24/2021

