
CSEP 521: Applied Algorithms
Lecture 16 – Document Similarity

Richard Anderson, February 25, 2021

Announcements

Topics

• Document similarity

• MinHash

• String similarity
• Edit Distance / Longest Common Subsequence

• Sharding strings

• Dimension reduction

Document Similarity

• Want to be able to identify documents that are “very close” to each
other

• Very large number of documents

• Individually pre-process documents
• Save a small amount of data per document (sketch)

• Perform similarity tests based on sketch

Jaccard Similarity
A

B

Let X be the characteristic vector for A where xj is the multiplicity of item j
and Y be the characteristic vector for B where yj is the multiplicity of item j.

Representation scheme

• Tokenize document

• Break document into shards

• Hash each shard into a domain
of size 264 (unsigned long)

• Treat as a bag of words*

• Use Jaccard similarity measure

far out in the uncharted backwaters of the
unfashionable end of the western spiral arm of the
galaxy lies a small unregarded yellow sun

1. far out in the uncharted
2. out in the uncharted backwaters
3. in the uncharted backwaters of
4. the uncharted backwaters of the
5. uncharted backwaters of the unfashionable
6. backwaters of the unfashionable end
7. of the unfashionable end of
8. the unfashionable end of the
9. unfashionable end of the western
10. end of the western spiral
11. of the western spiral arm
12. the western spiral arm of

* In this application, we use bag of words without multiplicity

Similarity testing

• Identify document pairs that have high similarity by doing pairwise
comparison

• Precompute hashes of shards – n shards for document of n tokens

• Cost of comparison is O(n)

• How to improve this: reduce the amount of information stored per
document

MinHash

• U is the domain (in this case, the hash of the shards, [0 . . . 264))

• Choose a random permutation on U

• Let A U

• MinHash(A) = argminxA(x)
• MinHash is the smallest element of A under the random permutation

U = {a, b, c, d, e, f, g, h, i, j }
A = { b, c, e, g }
B = { c, e, f }
1 = [a, c, d, i, j, h, b, e, f, g]
2 = [j, i, g, c, b, h, e, a, d, f]

An amazing result
A

B

U

Using the MinHash

• Identify document pairs where Jaccard(A,B) ≥ 0.95

• Run MinHash with k independent random permutations

• Number of times MinHash(A)=MinHash(B) is a good estimate of
Jaccard Similarity

• Compute the k MinHashes for each documents as a sketch

• Comparison of documents requires k comparisons

Similarity of Strings

• String edit distance – how many edits to convert S1 into S2

• Edit operations: Add character, Remove character, (Change character)

BARTHOLEMEWSIMPSON KRUSTYTHECLOWN

B A R T H O L E M E W S I M P S O N B-

A R T H O L E M E W S I M P S O N A-

R T H O L E M E W S I M P S O N K+

K R T H O L E M E W S I M P S O N U+

K R U T H O L E M E W S I M P S O N S+

K R U S T H O L E M E W S I M P S O N Y+

K R U S T Y H O L E M E W S I M P S O N T+

K R U S T Y T H O L E M E W S I M P S O N O-

K R U S T Y T H L E M E W S I M P S O N L-

K R U S T Y T H E M E W S I M P S O N M-

K R U S T Y T H E E W S I M P S O N E-

K R U S T Y T H E W S I M P S O N C+

K R U S T Y T H E C W S I M P S O N L+

BARTHOLEMEWSIMPSON KRUSTYTHECLOWN

K R U S T Y T H E C L W S I M P S O N O+

K R U S T Y T H E C L O W S I M P S O N S-

K R U S T Y T H E C L O W I M P S O N I-

K R U S T Y T H E C L O W M P S O N M-

K R U S T Y T H E C L O W P S O N P-

K R U S T Y T H E C L O W S O N S-

K R U S T Y T H E C L O W O N O-

K R U S T Y T H E C L O W N

Longest Common Subsequence

• C=c1…cg is a subsequence of A=a1…am if C can be obtained by
removing elements from A (but retaining order)

• LCS(A, B): A maximum length sequence that is a
subsequence of both A and B

ocurranec

occurrence

attacggct

tacgacca

bartholemewsimpson

krustytheclown

Edit Distance and LCS

• String A has length n and B has length m

• Suppose that A is converted to B by removing k characters and adding
j characters
• Number of unchanged characters is c = n – k = m – j

• Edit distance d is k + j

• n + m = 2c + k + j = 2c + d

• d = n + m – 2c

• Minimizing the edit distance is maximizing the length of the common
sequence

LCS Optimization

• A = a1a2…am

• B = b1b2…bn

• Opt[j, k] is the length of LCS(a1a2…aj, b1b2…bk)

• Optimization recurrence

If aj = bk, Opt[j,k] = 1 + Opt[j-1, k-1]

If aj bk, Opt[j,k] = max(Opt[j-1,k], Opt[j,k-1])

Opt[j,0] = Opt[0,k] = 0

Dynamic Programming Computation

Code to compute Opt[n, m]

for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++)

if (A[i] == B[j])

Opt[i,j] = Opt[i-1, j-1] + 1;

else if (Opt[i-1, j] >= Opt[i, j-1])

Opt[i, j] := Opt[i-1, j];

else

Opt[i, j] := Opt[i, j-1];

Computing the Longest Common Subsequence

LCS Performance

• Runtime is O(n2) for a pair of strings of length n

• Space requirement is O(n2)
• Which can be reduced to O(n) be reusing rows

• Recovering the actual LCS is more work, but can also be done in O(n) space

Experiment: compute the length of two random bit strings (alphabet size 2)

N: 10000 Base 2 Length: 8096 Gamma: 0.8096 Runtime:00:00:01.86
N: 20000 Base 2 Length: 16231 Gamma: 0.81155 Runtime:00:00:07.45
N: 30000 Base 2 Length: 24317 Gamma: 0.8105667 Runtime:00:00:16.82
N: 40000 Base 2 Length: 32510 Gamma: 0.81275 Runtime:00:00:29.84
N: 50000 Base 2 Length: 40563 Gamma: 0.81126 Runtime:00:00:46.78
N: 60000 Base 2 Length: 48700 Gamma: 0.8116667 Runtime:00:01:08.06
.
N: 300000 Base 2 Length: 243605 Gamma: 0.8120167 Runtime:00:28:07.32

Space efficient implementation
public int SpaceEfficientLCS() {

int n = str1.Length;
int m = str2.Length;
int[] prevRow = new int[m + 1];
int[] currRow = new int[m + 1];

for (int j = 0; j <= m; j++)
prevRow[j] = 0;

for (int i = 1; i <= n; i++) {
currRow[0] = 0;
for (int j = 1; j <= m; j++) {

if (str1[i - 1] == str2[j - 1])
currRow[j] = prevRow[j - 1] + 1;

else if (prevRow[j] >= currRow[j - 1])
currRow[j] = prevRow[j];

else
currRow[j] = currRow[j - 1];

}
for (int j = 1; j <= m; j++)

prevRow[j] = currRow[j];
}

return currRow[m];
}

String similarity

• Edit distance
• Advantages – measure of distance between strings

• Flexibility in edit operation and weighting

• Disadvantages
• Relatively inefficient: O(n2), heuristics may help for large strings or looking for

similarity

• Requires looking at the entire string

String similarity with shards

• Same basic idea as with documents

• Consider alphabets with a small number of characters, e.g., {a, c, t, g}

• Take shards as being strings of length k
• k a multiple of 32 would make sense for packing into long ints

• Hashing and minhash sketches apply as for documents

• Domain characteristics may be important
• Mutation rate / distribution in sequences

Coming next: Dimension reduction for Rn

• Consider the distance function D(x,y) = 0 if x = y, D(x,y) = 1 if x y

• Suppose we have a domain U and want to answer distance queries
between a set of n elements

• Natural solution is to use log2 U bits to describe the elements

• Can we use less space if we want to approximately answer distance
queries

Of course this is going to be hashing

• Choose a good hash function h: U 232

• Let f1(x) = h(x) mod 2

• 1 bit representation
• If x = y, then f1(x) = f1(y)
• If x y, then Pr[f1(x) = f1(y)] ≤ ½
• Property preserved with probability at least 50%

• Repeat with k independent has functions h1, . . . , hk
• If x = y, then fi(x) = fi(y) for all i = 1, . . ., k
• If x y, then Pr[fi(x) = fi(y) for all i = 1, . . ., k] ≤ 2-k

• To achieve error of δ, we need to use k = log2 1/δ

