

Announcements

Topics

- Bad cases for quad trees
- Hashing for nearest neighbors
- High dimensional data sets
- Documents data sets
- Jaccard Similarity
- MinHash
- Dimension Reduction

Bad case for Nearest Neighbor Query

Hashing Based nearest neighbors

- Hashing to test if a query point y
is with distance δ of a point in S
- Center boxes on coordinates of $1001 \quad 101 \quad$ (00) 101101 the form c2-k
- Hash the boxes so that O(n)
boxes are used
- Query point hashed to same boxes

Hashing based nearest neighbors

- Is y within δ of any point x in y in S ?
- Construct three grids with $3 \delta \times 3 \delta$ squares, offset by (δ, δ) and $(2 \delta, 2 \delta)$
- Use hashing to record the squares containing points of S
- Lookup the squares containing y by the hash function and test if there are neighbors in S
- Use a hierarchy of values powers of two of δ for an approximate nearest neighbor

High dimensional searching

- Many data sets are high dimensional
- High dimension can mean a mathematical space, such as $\mathrm{R}^{\text {d }}$, or a structure, such as High dimension can mean a mathematical sp
bag-of-words representation of documents
- Large scale data sets - Billions of photographs, web documents, sequences
- Tree based algorithms break down for high dimensions
- Number of points in a ball of radius B increases exponentially with dimension - Processing dimensions is expensive
- Idea - dimension reduction techniques
- Is it possible to reduced N -dimensional data to K -dimensional data, $\mathrm{K} \ll \mathrm{N}$, that approximately preserves distances
- Problem like it should be easy: merge lists of health failitem

More on distance metrics

- Implement across structures with multiple types
- Record: (int Age, string Name, enum HairColor, int Weight)
- Weighing of coordinates and monotonic functions of coordinates generally preserve being a distance function
- Can be tuning parameters for an application
- Example data set - Health Facility Lists, Entity resolution problem
- Problem seems like it should be easy: merge lists of health facilities from
- Fields: name, admin region, health facility type, geographic coordinates

Document databases - Large collections of text documents - Applications such as similarity search, plagiarism detection, classification - Distance metrics vs. similarity measures - Similarity measure a function where a high value is a more similar documents - Representation - strings, token streams, bags of words		

Document representation

- Text strings
- Edit distance as a similarity measure
- Token streams
- Simplify words and remove punctuation or markup
- Bag of words
- Represent the words as a set or a multiset
- Sparse representation

| Homework
 Similarity of articles from news groups
 Sample of 50 articles each from 20 groups |
| :--- | :--- |
| data50.csv Bag of bag of words
 labels.csv Association of articles to groups
 groups.csv Names of groups |
| data50.csv
 article id, word id, multiplicity |
| Words have been replaced by integers into another
 (missing) table, so the data is not readable |

Jaccard Similarity
$\operatorname{Jaccard}(A, B)=\frac{A \cap B}{A \cup B}$

Let X be the characteristic vector for A where x_{i} is the multiplicity of item j and Y be the characteristic vector for B where y_{j} is the multiplicity of item j.

$$
\operatorname{Jaccard}(A, B)=\frac{\sum_{j} \min \left(x_{j}, y_{j}\right)}{\sum_{j} \max \left(x_{j}, y_{j}\right)}
$$

Cosine Similarity
$\operatorname{CS}(A, B)=\frac{\sum_{j} x_{j} y_{j}}{\|X\|_{2}\|Y\|_{2}}$
X is the characteristic vector for A where X_{j} is the multiplicity of item j Y is the characteristic vector for B where y_{j} is the multiplicity of item j

Used in programming assignment - but not a focus of the lecture

Representation scheme

- Tokenize document
- Break document into shards
- Hash each shard into a domain of size 2^{64} (unsigned long)
- Treat as a bag of words
- Use Jaccard Similarity measure
far out in the uncharted backwaters of the unfashionable end of the western spiral arm of the galaxy lies a small unregarded yellow sun

1. far out in the uncharted
2. out in the uncharted backwaters
3. in the uncharted backwaters of
the uncharted backwaters of the
4. uncharted backwaters of the unfashionable
5. backwaters of the unfashionable end
6. of the unfashionable end of
7. unfashionable end of the wester
8. unfashionable end of the western
9. of the western spiral arm 12. the western spiral arm of

Aside - Rabin Fingerprinting

- n-bit message m_{0}, \ldots, m_{n-1} viewed as polynomial over Z_{2} - $f(x)=m_{0}+m_{1} x+m_{2} x^{2}+\ldots+m_{n-1} x^{n-1}$
- Pick a random irreducible polynomial $p(x)$ of degree $k(k=64)$ and the
fingerprint is $f(x) \bmod p(x)$
- Suitable for domain of size 2^{k}
- Efficient implementation with bit operations including shifts
- Rolling hash that can reuse computation from shard
- Cool algebra for math majors

Similarity testing

- Identify document pairs that have high similarity by doing pairwise comparison
- Precompute hashes of shards -n shards for document of n tokens
- Cost of comparison is $\mathrm{O}(\mathrm{n})$
- How to improve this: reduce the amount of information stored per document

MinHash

- U is the domain (in this case, the hash of the shards, [0 . . 2^{64})
- Choose a random permutation π on U
- Let $\mathrm{A} \subseteq \mathrm{U}$
- $\operatorname{MinHash}(A)=\operatorname{argmin}_{x \in A} \pi(x)$
- MinHash is the smallest element of A under the random permutation

Using the MinHash

- Identify document pairs where Jaccard $(A, B) \geq 0.95$
- Run MinHash with k independent permutations
- Number of times $\operatorname{MinHash}(\mathrm{A})=\mathrm{MinHash}(\mathrm{B})$ is a good estimate of Jaccard Similarity
- Compute the k MinHashes for each documents as a sketch
- Comparison of documents requires k comparisons

