

Announcements	

Topics

- Bad cases for quad trees
- Hashing for nearest neighbors
- High dimensional data sets
- Documents data sets
- Jaccard Similarity
- MinHash
- Dimension Reduction

- Search algorithm will lead us to expand every cell containing a point
- Approximate search gives a much better results

Hashing Based nearest neighbors

[••] [•]

[••] [•] [•]

- Hashing to test if a query point y is with distance δ of a point in S
- Center boxes on coordinates of the form c2^{-k}
- Hash the boxes so that O(n) boxes are used
- Query point hashed to same boxes

More on distance metrics

- Implement across structures with multiple types
 Record: (int Age, string Name, enum HairColor, int Weight)
- Weighing of coordinates and monotonic functions of coordinates generally preserve being a distance function
 - Can be tuning parameters for an application
- Example data set Health Facility Lists, Entity resolution problem
 - Problem seems like it should be easy: merge lists of health facilities from
 - different sources
 - Fields: name, admin region, health facility type, geographic coordinates

High dimensional searching

- Many data sets are high dimensional
 High dimension can mean a mathematical space, such as R^d, or a structure, such as bag-6⁻⁰ words representation of documents
- Large scale data sets Billions of photographs, web documents, sequences
- Tree based algorithms break down for high dimensions
 Number of points in a ball of radius B increases exponentially with dimension
 Processing dimensions is expensive
- Idea dimension reduction techniques
 - Is it possible to reduced N-dimensional data to K-dimensional data, K << N, that approximately preserves distances

Cosine Similarity $\mathrm{CS}(A,B) = \frac{\sum_j x_j y_j}{\|X\|_2 \|Y\|_2}$ X is the characteristic vector for A where x_j is the multiplicity of item j Y is the characteristic vector for B where y_j is the multiplicity of item j. Used in programming assignment - but not a focus of the lecture

AltaVista search engine problem

- Avoid returning (near) duplicate items in search results
- Can fingerprinting techniques apply?
 - Fingerprinting is usually applied to detect or amplify small changes

Real Family Part	and an article of the second		N
ItaVista onnections	The meet governal and coeffed goods to the Met Monaconstant	October 23, 1905 FD physiologicary 262 com	
earch For. 🕈 Mailta	n Chape Chies Chain	Bearch tar	1
TAVISTA CHARMEL	MacMannia - Emanos - Trenti - Scopento - Carlenti Sec. Doverseshim ^{Mar} - Support USBFUL TOOLS Inder - Mass - Carlent - Chick Email	-mailt-Ners- EarsyEder-Transmor	
Internation Internation	ALTAMSTAHICHUGHTS POWER SEARCH * 300 Unrues connects Manuals 1955, http: 1953/	TRY THESE BEARDHES.	

Representation scheme

- Tokenize document
- Break document into shards
- Hash each shard into a domain of size 264 (unsigned long)
- Treat as a bag of words
- Use Jaccard Similarity measure
- far out in the uncharted backwaters of the unfashionable end of the western spiral arm of the galaxy lies a small unregarded yellow sun

- Benery lies is share three gained years share 1. far out in the uncharted 2. out in the uncharted backwaters 3. in the uncharted backwaters of 4. the uncharted backwaters of the 5. uncharted backwaters of the unfashionable 6. backwaters of the unfashionable end 7. of the unfashionable end 8. the unfashionable end of the 9. unfashionable end of the western 10. end of the western spiral 11. of the western spiral arm 12. the western spiral arm

Aside – Rabin Fingerprinting

- n-bit message m_0 , \ldots , $m_{n\cdot 1}$ viewed as polynomial over Z_2 f(x) = $m_0+m_1x+m_2x^2+\ldots+m_{n\cdot 1}\,x^{n\cdot 1}$
- Pick a random irreducible polynomial p(x) of degree k (k = 64) and the fingerprint is $f(x) \mod p(x)$
- Suitable for domain of size 2^k
- · Efficient implementation with bit operations including shifts
- · Rolling hash that can reuse computation from shard
- · Cool algebra for math majors

Similarity testing

- · Identify document pairs that have high similarity by doing pairwise comparison
- Precompute hashes of shards n shards for document of n tokens
- Cost of comparison is O(n)
- · How to improve this: reduce the amount of information stored per document

MinHash

- U is the domain (in this case, the hash of the shards, $\ [0\ldots 2^{64})$
- Choose a random permutation π on ${\rm U}$
- Let $A \subseteq U$
- MinHash(A) = argmin_{x∈A}π(x)
 MinHash is the smallest element of A under the random permutation

Using the MinHash

- Identify document pairs where Jaccard(A,B) ≥ 0.95
- Run MinHash with k independent permutations
- Number of times MinHash(A)=MinHash(B) is a good estimate of Jaccard Similarity
- Compute the k MinHashes for each documents as a sketch
- Comparison of documents requires k comparisons