CSEP 521: Applied Algorithms Lecture 14 - Nearest neighbors

Richard Anderson
February 18, 2021

Announcements

- Homework schedule
- Homework 7, Due Thursday, February 25, 11:59 pm
- Homework 8, Due Thursday, March 4, 11:59 pm
- Homework 9, Due Thursday, March 11, 11:59 pm
- Homework 10 , Due Thursday, March 18, $11: 59$ pm.

High dimensional searching

- Many data sets are high dimensional
- High dimension can mean a mathematical space, such as R^{d}, or a structure, such as bag-of-words representation of documents
- Canonical problem:
- Given a new datum x, find the closest element y in the dataset
- Lots of things need to be defined, like "closest"
- Think of the data set as being very large, so we would like a mechanism that avoids having to do comparisons with all elements

Outline

Concepts

- Metric (distance measures)
- Coding theory
- Searching in 2-d
- Quad trees
- Voronoi diagrams
- Higher (but not too high) dimensions
- K-d trees

Nearest neighbor motivation

Find closest match to
a query in a large
data set

Metric

- Distance measure, $\mathrm{d}(\mathrm{x}, \mathrm{y}), \mathrm{d}: \mathrm{A} \times \mathrm{A} \rightarrow[0, \infty)$
- Properties
d $d(x, y)=0$ iff $x=$
$d(x, y)=d(y, x)$
- $d(x, y) \leq d(x, z)$
- Standard Euclidean distance - L^{2} Norm $\|(x, y)\|_{2}-\sqrt{x^{2}+y^{2}}$

Lp Norm $|(x, y)|_{p}-\sqrt[2]{x^{p}+y}$

- L^{1} Norm $\|(x, y)\|_{1}=|x-y|$
- L^{∞} Norm $\quad\|(x, y)\|_{\infty}=\max (x, y)$

Quad Tree

- Start with a bounding square
- Each level divides a square into four quadrants
- Search explores cells which may contain nearest neighbor
- Track best-so-far distance to prune sub trees in recursive tree traversal
- Depth is determined by closest pair distance

Voronoi diagram

- For each point x , Voronoi region is the set of points (in R^{2}) where x is the nearest neighbor in S
- Between each pair of points we can look at the separating half spaces
- A points Voronoi region is the intersection of half spaces (and convex)
- The number of segments is $\mathrm{O}(\mathrm{N})$

Search in a Voronoi diagram

- Need to overlay a search
structure on top of the diagram
- Can use a sequence of
separating segments
- Binary space partition trees can be used
- In theory, this can be done in O(logn) query time

What about 3 dimensions?

- Quad trees generalize to octtrees in 3d, with 8 children instead of 4
- Unfortunately, the 3-d Voronoi tessellation (honeycomb) can have size n^{2}
- Proof: divide the points into to sets A and B , and put A and B on separate arcs. This can be done so that each point a_{i} in A shares a face with each b_{i} in B

KD-Tree construction

- Find median point in dimension
d_{j}
- Split points into left/right
- Recursively decompose regions
- Maintain bounding boxes and/or splitting axis
- Tree depth is $\mathrm{O}(\log \mathrm{n})$
- Tree construction is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Tree operations

- Locate point
- Traverse tree
- Range query: return points
inside a bounding box
- Traverse tree
- Nearest neighbor search
- Traverse tree

Comparison between KD Trees and generalized Quad Trees

- KD trees have degree 2 and height log n
- Gen-Quad Trees have degree $2^{\text {d }}$ and height dependent on point distribution
- KD bounding boxes can be narrow
- Gen-Quad Trees are cubes
- KD trees generally preferred for $d \geq 4$

Approximate closest points

- Nearest neighbor search
if (dist(P, T.Region) < bound)
Region) < bound)
Search(T1, P, bound, closest)
- Approximation algorithm
if $((1+\varepsilon) *$ dist(P, T.Region $)<$ bound $)$
Search(T1, P, bound, closest)

