
2/18/2021

1

CSEP 521: Applied Algorithms
Lecture 14 – Nearest neighbors

Richard Anderson

February 18, 2021

Announcements

• Homework schedule
• Homework 7, Due Thursday, February 25, 11:59 pm.

• Homework 8, Due Thursday, March 4, 11:59 pm.

• Homework 9, Due Thursday, March 11, 11:59 pm.

• Homework 10, Due Thursday, March 18, 11:59 pm.

High dimensional searching

• Many data sets are high dimensional
• High dimension can mean a mathematical space, such as Rd, or a structure,

such as bag-of-words representation of documents

• Canonical problem:
• Given a new datum x, find the closest element y in the dataset

• Lots of things need to be defined, like “closest”

• Think of the data set as being very large, so we would like a
mechanism that avoids having to do comparisons with all elements

Nearest neighbor motivation

Find closest match to
a query in a large
data set

Outline

• Metric (distance measures)

• Coding theory

• Searching in 2-d
• Quad trees

• Voronoi diagrams

• Higher (but not too high) dimensions
• K-d trees

Concepts

• Metric
• Distance measure, d(x,y), d: A A [0,)
• Properties

• d(x,y) = 0 iff x = y
• d(x,y) = d(y,x)
• d(x,y) ≤ d(x,z) + d(z,y)
• d(x,y) ≥ 0

• Standard Euclidean distance – L2 Norm

• Lp Norm

• L1 Norm

• L Norm

2/18/2021

2

Nearest neighbor problem

• Set of points S

• Given query point y, find a point in S
closest to y

Nearest neighbor problem: L1 and L metrics

And now for R2 Quad Tree

• Start with a bounding square

• Each level divides a square into
four quadrants

• Search explores cells which may
contain nearest neighbor
• Track best-so-far distance to prune

sub trees in recursive tree
traversal

• Depth is determined by closest
pair distance

Nearest Neighbor Search

Search(tree T, point P, int bound, point closest){
if leaf node

if non-empty
if (dist(P, X) < bound) update bound and closest

else
foreach subtree T1

if (dist(P, T.Region) < bound)
Search(T1, P, bound, closest)

}

Voronoi diagram

• For each point x, Voronoi region
is the set of points (in R2) where
x is the nearest neighbor in S

• Between each pair of points we
can look at the separating half
spaces

• A points Voronoi region is the
intersection of half spaces (and
convex)

• The number of segments is O(N)

2/18/2021

3

Voronoi Regions
Compute Intersection of Half Spaces

Building the Voronoi diagram

• Lots of algorithms exist

• It can be done in O(n log n) time

• Programming is a challenge
• Lots of special cases

• Careful numerical programming

• Hard to debug

• Most practical algorithm is
probably to insert points in
random order into an existing
diagram

Search in a Voronoi diagram

• Need to overlay a search
structure on top of the diagram

• Can use a sequence of
separating segments

• Binary space partition trees can
be used

• In theory, this can be done in
O(log n) query time

What about 3 dimensions?

• Quad trees generalize to oct-
trees in 3d, with 8 children
instead of 4

• Unfortunately, the 3-d Voronoi
tessellation (honeycomb) can
have size n2

• Proof: divide the points into to
sets A and B, and put A and B on
separate arcs. This can be done so
that each point ai in A shares a
face with each bj in B

K-D trees

• Another spatial decomposition
tree
• Bentley, 1975

• Separate across dimensions in
order d1, d2, d3, . . .

• Split point sets evenly, not space
evenly

KD-Tree construction

• Find median point in dimension
dj

• Split points into left/right

• Recursively decompose regions

• Maintain bounding boxes and/or
splitting axis

• Tree depth is O(log n)

• Tree construction is O(n log n)

2/18/2021

4

Tree operations

• Locate point
• Traverse tree

• Range query: return points
inside a bounding box
• Traverse tree

• Nearest neighbor search
• Traverse tree

Comparison between KD Trees and
generalized Quad Trees
• KD trees have degree 2 and

height log n

• Gen-Quad Trees have degree 2d

and height dependent on point
distribution

• KD bounding boxes can be
narrow

• Gen-Quad Trees are cubes

• KD trees generally preferred for
d ≥ 4

Approximate closest points

• Approximate closest point
• Suppose the closest point distance from y

to a point in S is r

• Find a point in S that has distance (1+ε)r
from y

r

Approximate closest points

• Nearest neighbor search

• Approximation algorithm

if (dist(P, T.Region) < bound)
Search(T1, P, bound, closest)

if ((1+ε)*dist(P, T.Region) < bound)
Search(T1, P, bound, closest)

bound dist

