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CSEP 521: Applied Algorithms
Lecture 13 – Geometry and Searching

Richard Anderson

February 16, 2021

Announcements

•

Course outline

• Probabilistic algorithms and average case analysis

• Sublinear space algorithms for streaming

• Geometry and searching
• Nearest neighbor problems

• Low dimensional searching

• Higher dimensions

• Locally sensitive hashing

• Document similarity

• Linear programming

High dimensional searching

• Many data sets are high dimensional
• High dimension can mean a mathematical space,  such as Rd,  or a structure, 

such as bag-of-words representation of documents

• Canonical problem: 
• Given a new datum x,  find the closest element y in the dataset

• Lots of things need to be defined,  like “closest”

• Think of the data set as being very large, so we would like a 
mechanism that avoids having to do comparisons with all elements

Tentative outline

• Concepts

• Coding theory

Concepts

• Product space
• Mathematically – Cartesian Product

• Euclidean space,  Rd

• Other spaces,  Zp
d

• Metric
• Distance measure,  d(x,y),  d: A  A  [0, )

• Properties
• d(x,y) = 0 iff x = y

• d(x,y) = d(y,x)

• d(x,y) ≤ d(x,z) + d(z,y)

• d(x,y) ≥ 0
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Closest points and approximate closest points

• Set of points S

• Given query point y, find a point in S 
closest to y

• Approximate closest point
• Suppose the closest point distance from y 

to a point in S is r

• Find a point in S that has distance (1+ε)r 
from y

Intuition and where it breaks down

• My pictures are in R2

• I can imagine what happens in R3

• Higher dimensions are much, much harder

• Imagine an N dimensional sphere

• Low dimensional intuition is not necessarily good for 
higher dimensions
• Many quantities grow exponentially with dimension
• Kissing number – number n dimensional sphere that can be 

arranged to touch a single sphere

Dim Lower Upper

2 6 6

3 12 12

4 24 24

8 240 240

12 840 1357

16 4320 3183

20 17400 36764

24 196560 196560

28 204368

32 276032

36 484568

Warm up – Coding theory

• Problem – sending data across a noisy channel

• Model 
• Words encoded as a block of digits
• Digits are transmitted
• Some digits may be changed
• Block is decoded to get message

ALICE BOB

Idea one – parity bit

• Add a parity bit or check sum
• Message x1, x2, . . ., xk

• Let y = x1  x2  . . .   xk (exclusive OR)

• Send message x1, x2, . . ., xk, y

• Resulting message has even parity

• If a block is received with odd parity,  at least one bit was flipped

• Single error detection

Idea two - redundancy

• Make three copies of each 
code word

• One error correcting

• Every code word is a 
distance at least three

• But this is a very dumb code

Text Codeword

000 000000000

001 001001001

010 010010010

011 011011011

100 100100100

101 101101101

110 110110110

111 111111111

Block codes

• Coding theory / Information theory started in 1940s at Bell Labs
• Clause Shannon,  Richard Hamming

• (n,k,d)q : Alphabet size q (omit for 2), block length n, message length 
k, distance d
• k/n gives the rate

• (n,k,d)q code can detect d-1 errors and correct (d-1)/2 errors
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Hamming(7,4) code

• Linear code with 3 parity bits

• Basis vectors
• [1,1,1,0,0,0,0]

• [1,0,0,1,1,0,0]

• [0,1,0,1,0,1,0]

• [1,1,0,1,0,0,1]

• Encoding / Decoding / Error correction are linear algebra operations 
over Z2

Golay Code: G24 [24,12,8]2 and G23 [23,12,7]2

• Closely related codes, 12 dimensional subspaces of Z2
24 and Z2

23

respectively

• G24 is used because it is 3 bytes

• G23 is a perfect code.  Spheres of radius 3 around the code words 
partition the vector space

• Imagine a 23 dimensional sphere of radius three centered at z, find 
the codeword in the sphere

Low dimensional problems

• S = {x1, x2, . . . , xn}

• Given an value y,  find the closest point in S to y.   
• Mini d(y, xi)

y

How do we solve this in R1

Issues

• Static versus dynamic data structures

• Average case versus worst case

• Numerical precision of coordinates

And now for R2
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What is the distance function?

• Standard Euclidean distance – L2 Norm

• Lp Norm

• L1 Norm

• L Norm

Data structures for 2-d nearest neighbor

• Unlike 1-d we do not have a linear order on the points

• Multiple options are available (and variants exist)
• Quad trees

• K-d trees 

• Voronoi diagram

Quad Tree

• Start with a bounding square

• Each level divides a square into 
four quadrants

• Search explores cells which may 
contain nearest neighbor
• Track best-so-far distance to prune 

sub trees in recursive tree 
traversal

• Depth is determined by closest 
pair distance

Voronoi diagram

• For each point x, Voronoi region 
is the set of points (in R2) where 
x is the nearest neighbor in S

• Between each pair of points we 
can look at the separating half 
spaces

• A points Voronoi region is the 
intersection of half spaces (and 
convex)

• The number of segments is O(N)

Building the Voronoi diagram

• Lots of algorithms exist

• It can be done in O(n log n) time

• Programming is a challenge
• Lots of special cases

• Careful numerical programming

• Hard to debug

• Most practical algorithm is 
probably to insert points in 
random order into an existing 
diagram

Search in a Voronoi diagram

• Need to overlay a search 
structure on top of the diagram

• Can use a sequence of 
separating segments

• Binary space partition trees can 
be used

• In theory, this can be done in 
O(log n) query time
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What about 3 dimensions?

• Quad trees generalize to oct-
trees in 3d,  with 8 children 
instead of 4

• Unfortunately, the 3-d voronoi
tessellation (honeycomb) can 
have size n2

• Proof: divide the points into to 
sets A and B,  and put A and B on 
separate arcs.  This can be done so 
that each point ai in A shares a 
face with each bj in B


