CSEP 521: Applied Algorithms Lecture 13 – Geometry and Searching

Richard Anderson

February 16, 2021

Announcements

- lacksquare

Course outline

- Probabilistic algorithms and average case analysis
- Sublinear space algorithms for streaming
- Geometry and searching
 - Nearest neighbor problems
 - Low dimensional searching
 - Higher dimensions
 - Locally sensitive hashing
 - Document similarity
 - Linear programming

High dimensional searching

- Many data sets are high dimensional
 - High dimension can mean a mathematical space, such as R^d, or a structure, such as bag-of-words representation of documents
- Canonical problem:
 - Given a new datum x, find the closest element y in the dataset
- Lots of things need to be defined, like "closest"
- Think of the data set as being very large, so we would like a mechanism that avoids having to do comparisons with all elements

Outline for this week

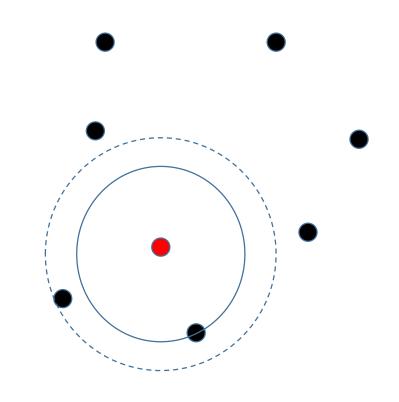
- Concepts
- Coding theory
- Searching in 2-d
 - Quad trees
 - Voronoi diagrams
- Higher (but not too high) dimensions
 - K-d trees

Concepts

- Product space
 - Mathematically Cartesian Product
 - Euclidean space, R^d
 - Other spaces, Z_p^{d}
- Metric
 - Distance measure, d(x,y), $d: A \times A \rightarrow [0, \infty)$
 - Properties
 - d(x,y) = 0 iff x = y
 - d(x,y) = d(y,x)
 - $d(x,y) \le d(x,z) + d(z,y)$
 - $d(x,y) \ge 0$

Closest points and approximate closest points

- Set of points S
- Given query point y, find a point in S closest to y
- ε Approximate closest point
 - Suppose the closest point distance from y to a point in S is r
 - Find a point in S that has distance (1+ε)r from y



own ()

Intuition and where it breaks down⁽

- My pictures are in R²
- I can imagine what happens in R³
- Higher dimensions are much, much harder
- Imagine an N dimensional sphere
- Low dimensional intuition is not necessarily good for higher dimensions
 - Many quantities grow exponentially with dimension
 - Kissing number number n dimensional sphere that can be arranged to touch a single sphere

	Dim	Lower	Upper
	2	6	6
	3	12	12
	4	24	24
0	8	240	240
	12	840	1357
	16	4320	3183
	20	17400	36764
	24	196560	196560
	28	204368	
	32	276032	
	36	484568	

Warm up – Coding theory

• Problem – sending data across a noisy channel

- Model
 - Words encoded as a block of digits
 - Digits are transmitted
 - Some digits may be changed
 - The block is decoded to get the message

Idea one – parity bit

- Add a parity bit or check sum
 - Message x₁, x₂, . . ., x_k
 - Let $y = x_1 \oplus x_2 \oplus \ldots \oplus x_k$ (exclusive OR)
 - Send message x_1, x_2, \ldots, x_k, y
- Resulting message has even parity
- If a block is received with odd parity, at least one bit was flipped
- Single error detection

Idea two - redundancy

- Make three copies of each code word
- One error correcting
- Every pair of code words is at distance at least three
- But this is a very dumb code

Text	Codeword
000	00000000
001	001001001
010	010010010
011	011011011
100	100100100
101	101101101
110	110110110
111	111111111

Block codes

- Coding theory / Information theory started in 1940s at Bell Labs
 - Clause Shannon, Richard Hamming
- (n,k,d)_q: Alphabet size q (omit for 2), block length n, message length k, distance d
 - k/n gives the rate
- $(n,k,d)_q$ code can detect d-1 errors and correct $\lfloor (d-1)/2 \rfloor$ errors

Hamming(7,4) code

- Linear code with 3 parity bits
- Basis vectors
 - [1,1,1,0,0,0,0]
 - [1,0,0,1,1,0,0]
 - [0,1,0,1,0,1,0]
 - [1,1,0,1,0,0,1]
- Encoding / Decoding / Error correction are linear algebra operations over $\rm Z_2$

Golay Code: G_{24} [24,12,8]₂ and G_{23} [23,12,7]₂

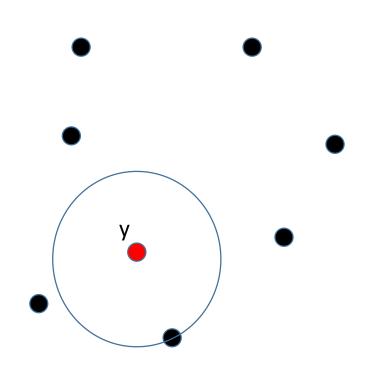
- Closely related codes, 12 dimensional subspaces of Z₂²⁴ and Z₂²³ respectively
- G₂₄ is used because it is 3 bytes
- G₂₃ is a perfect code. Spheres of radius 3 around the code words partition the vector space
- Imagine a 23 dimensional sphere of radius three centered at z, find the codeword in the sphere

Hamming distance

- A and B are binary vectors of length k
- Hamming Distance, HD(A,B) is the number of positions where they differ
 - A = 10110010
 - B = 00100110
 - HD(A,B) = 3
- Ball of radius r centered at A is the set of all B with HD(A,B)≤r
- A = 10011, r = 2, ball of radius 2: {10011, 00011, 11011, 10111, 10101, 10001, 10010, 01011, 00111, 00001, 00010, 11111, 11001, 11010, 10101, 10101, 10100}

Low dimensional problems

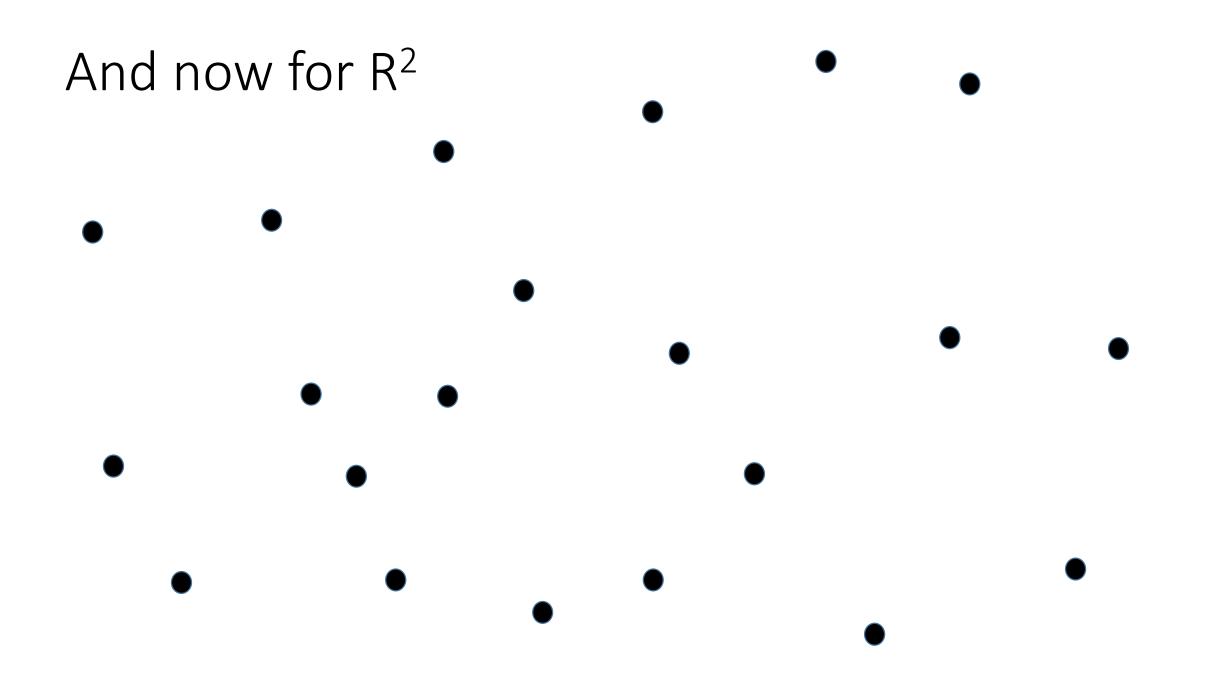
- S = { $x_1, x_2, ..., x_n$ }
- Given an value y, find the closest point in S to y.
 - Min_i d(y, x_i)



How do we solve this in R¹

Issues

- Static versus dynamic data structures
- Average case versus worst case
- Numerical precision of coordinates



What is the distance function?

• Standard Euclidean distance – L² Norm

$$|(x,y)||_2 = \sqrt{x^2 + y^2}$$

• L^p Norm

$$\|(x,y)\|_p = \sqrt[p]{x^p + y^p}$$

• L¹ Norm

$$||(x,y)||_1 = |x+y||$$

• L^{∞} Norm

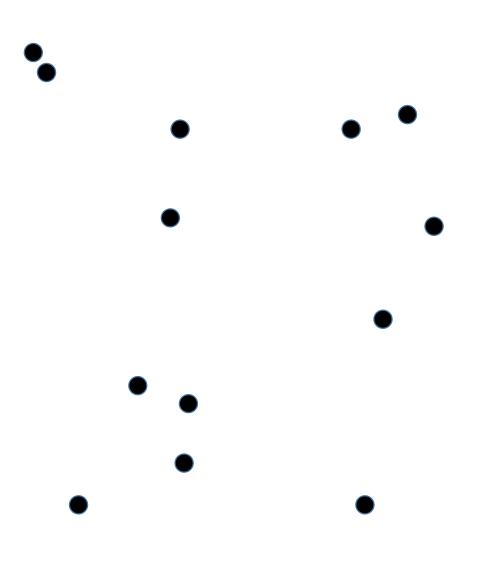
$$\|(x,y)\|_{\infty} = \max(x,y)$$

Data structures for 2-d nearest neighbor

- Unlike 1-d we do not have a linear order on the points
- Multiple options are available (and variants exist)
 - Quad trees
 - K-d trees
 - Voronoi diagram

Quad Tree

- Start with a bounding square
- Each level divides a square into four quadrants
- Search explores cells which may contain a nearest neighbor
 - Track best-so-far distance to prune sub trees in recursive tree traversal
- Depth is determined by closest pair distance



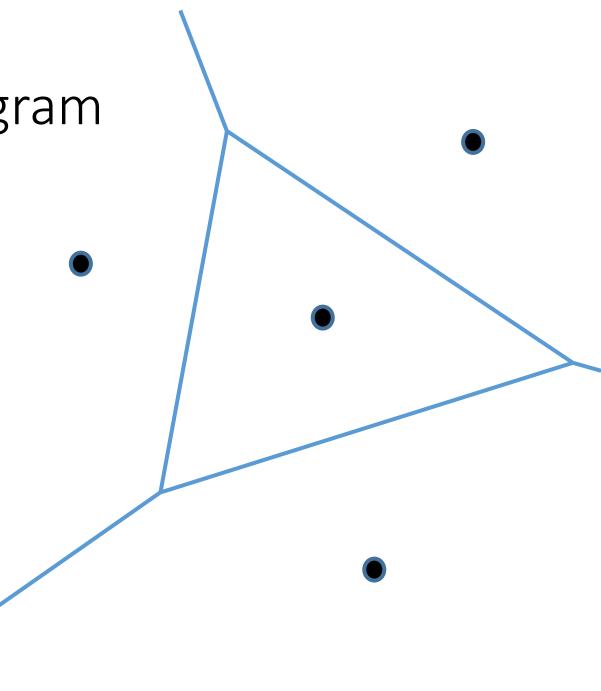
Voronoi diagram

- For each point x in S, the Voronoi region is the set of points (in R²) where x is the nearest neighbor in S
- Between each pair of points we can look at the separating half spaces
- A point's Voronoi region is the intersection of half spaces (and is convex)
- The number of segments is O(N)



Building the Voronoi diagram

- Lots of algorithms exist
- It can be done in O(n log n) time
- Programming is a challenge
 - Lots of special cases
 - Careful numerical programming
 - Hard to debug
- Most practical algorithm is probably to insert points in random order into a Voronoi diagram



Search in a Voronoi diagram

- Need to overlay a search structure on top of the diagram
- Can use a sequence of separating segments
- Binary space partition trees can be used
- In theory, this can be done in O(log n) query time

What about 3 dimensions?

- Quad trees generalize to octtrees in 3-d, with 8 children instead of 4
- Unfortunately, the 3-d voronoi tessellation (honeycomb) can have size n²
 - Proof: divide the points into to sets A and B, and put A and B on separate arcs. This can be done so that each point a_i in A shares a face with each b_j in B