CSEP 521: Applied Algorithms Lecture 13 - Geometry and Searching

Richard Anderson
February 16, 2021

Announcements

Course outline

- Probabilistic algorithms and average case analysis
- Sublinear space algorithms for streaming
- Geometry and searching
- Nearest neighbor problems
- Low dimensional searching
- Higher dimensions
- Locally sensitive hashing
- Document similarity
- Linear programming

High dimensional searching

- Many data sets are high dimensional
- High dimension can mean a mathematical space, such as R^{d}, or a structure, such as bag-of-words representation of documents
- Canonical problem:
- Given a new datum x, find the closest element y in the dataset
- Lots of things need to be defined, like "closest"
- Think of the data set as being very large, so we would like a mechanism that avoids having to do comparisons with all elements

Outline for this week

- Concepts

- Coding theory
- Searching in 2-d
- Quad trees
- Voronoi diagrams
- Higher (but not too high) dimensions
- K-d trees

Concepts

- Product space
- Mathematically - Cartesian Product
- Euclidean space, R^{d}
- Other spaces, $Z_{p}{ }^{\text {d }}$
- Metric
- Distance measure, $d(x, y), d: A \times A \rightarrow[0, \infty)$
- Properties
- $d(x, y)=0$ iff $x=y$
- $d(x, y)=d(y, x)$
- $d(x, y) \leq d(x, z)+d(z, y)$
- $d(x, y) \geq 0$

Closest points and approximate closest points

- Set of points S
- Given query point y, find a point in S closest to y
- ε - Approximate closest point
- Suppose the closest point distance from y to a point in S is r
- Find a point in S that has distance $(1+\varepsilon) r$ from y

Intuition and where it breaks down

- My pictures are in R^{2}
- I can imagine what happens in R^{3}
- Higher dimensions are much, much harder
- Imagine an N dimensional sphere
- Low dimensional intuition is not necessarily good for higher dimensions
- Many quantities grow exponentially with dimension
- Kissing number - number n dimensional sphere that can be arranged to touch a single sphere

Dim	Lower	Upper
2	6	6
3	12	12
4	24	24
8	240	240
12	840	1357
16	4320	3183
20	17400	36764
24	196560	196560
28	204368	
32	276032	
36	484568	

Warm up - Coding theory

- Problem - sending data across a noisy channel

- Model
- Words encoded as a block of digits
- Digits are transmitted
- Some digits may be changed
- The block is decoded to get the message

Idea one - parity bit

- Add a parity bit or check sum
- Message $x_{1}, x_{2}, \ldots, x_{k}$
- Let $\mathrm{y}=\mathrm{x}_{1} \oplus \mathrm{x}_{2} \oplus \ldots \oplus \mathrm{x}_{\mathrm{k}}$ (exclusive OR)
- Send message $x_{1}, x_{2}, \ldots, x_{k}, y$
- Resulting message has even parity
- If a block is received with odd parity, at least one bit was flipped
- Single error detection

Idea two - redundancy

- Make three copies of each code word
- One error correcting
- Every pair of code words is at distance at least three
- But this is a very dumb code

Text	Codeword
000	000000000
001	001001001
010	010010010
011	011011011
100	100100100
101	101101101
110	111111111
111	

Block codes

- Coding theory / Information theory started in 1940s at Bell Labs
- Clause Shannon, Richard Hamming
- $(\mathrm{n}, \mathrm{k}, \mathrm{d})_{\mathrm{q}}$: Alphabet size q (omit for 2), block length n , message length k, distance d
- k / n gives the rate
- $(n, k, d)_{q}$ code can detect $d-1$ errors and correct $\lfloor(d-1) / 2\rfloor$ errors

Hamming $(7,4)$ code

- Linear code with 3 parity bits
- Basis vectors
- [1,1,1,0,0,0,0]
- [1,0,0,1,1,0,0]
- [0,1,0,1,0,1,0]
- [1,1,0,1,0,0,1]
- Encoding / Decoding / Error correction are linear algebra operations over Z_{2}

Golay Code: $G_{24}[24,12,8]_{2}$ and $G_{23}[23,12,7]_{2}$

- Closely related codes, 12 dimensional subspaces of $Z_{2}{ }^{24}$ and $Z_{2}{ }^{23}$ respectively
- G_{24} is used because it is 3 bytes
- G_{23} is a perfect code. Spheres of radius 3 around the code words partition the vector space
- Imagine a 23 dimensional sphere of radius three centered at z, find the codeword in the sphere

Hamming distance

- A and B are binary vectors of length k
- Hamming Distance, $H D(A, B)$ is the number of positions where they differ
- $A=10110010$
- $B=00100110$
- $\mathrm{HD}(\mathrm{A}, \mathrm{B})=3$
- Ball of radius r centered at A is the set of all B with $H D(A, B) \leq r$
- $A=10011, r=2$, ball of radius 2 : $\{10011,00011,11011,10111$, 10001, 10010, 01011, 00111, 00001, 00010, 11111, 11001, 11010, 10101, 10110, 10000\}

Low dimensional problems

- $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Given an value y, find the closest point in S to y.
- $\operatorname{Min} n_{i} d\left(y, x_{i}\right)$

How do we solve this in R^{1}

Issues

- Static versus dynamic data structures
- Average case versus worst case
- Numerical precision of coordinates

And now for R^{2}
\bullet

What is the distance function?

- Standard Euclidean distance - L^{2} Norm

$$
\|(x, y)\|_{2}=\sqrt{x^{2}+y^{2}}
$$

- Lp ${ }^{\mathrm{p}}$ Norm

$$
\|(x, y)\|_{p}=\sqrt[p]{x^{p}+y^{p}}
$$

- L ${ }^{1}$ Norm

$$
\|(x, y)\|_{1}=|x+y|
$$

- L^{∞} Norm

$$
\|(x, y)\|_{\infty}=\max (x, y)
$$

Data structures for 2-d nearest neighbor

- Unlike 1-d we do not have a linear order on the points
- Multiple options are available (and variants exist)
- Quad trees
- K-d trees
- Voronoi diagram

Quad Tree

- Start with a bounding square
- Each level divides a square into four quadrants
- Search explores cells which may contain a nearest neighbor
- Track best-so-far distance to prune sub trees in recursive tree traversal
- Depth is determined by closest pair distance

Voronoi diagram

- For each point x in S, the Voronoi region is the set of points (in R^{2}) where x is the nearest neighbor in S
- Between each pair of points we can look at the separating half spaces
- A point's Voronoi region is the intersection of half spaces (and is convex)
- The number of segments is $\mathrm{O}(\mathrm{N})$

Building the Voronoi diagram

- Lots of algorithms exist
- It can be done in $O(n \log n)$ time
- Programming is a challenge
- Lots of special cases
- Careful numerical programming
- Hard to debug
- Most practical algorithm is probably to insert points in random order into a Voronoi diagram

Search in a Voronoi diagram

- Need to overlay a search structure on top of the diagram
- Can use a sequence of separating segments
- Binary space partition trees can be used
- In theory, this can be done in O(log n) query time

What about 3 dimensions?

- Quad trees generalize to octtrees in 3-d, with 8 children instead of 4
- Unfortunately, the 3-d voronoi tessellation (honeycomb) can have size n^{2}
- Proof: divide the points into to sets A and B, and put A and B on separate arcs. This can be done so that each point a_{i} in A shares a face with each b_{j} in B

