Announcements

CSEP 521: Applied Algorithms

Lecture 12 - Stream Algorithms:
Frequency Estimates

Frequency Moments

- Compute the sum of powers of frequency of elements
- Higher moments put more emphasis on most frequent items

Frequency Moments
- Compute the sum of powers of frequency of elements
• Higher moments put more emphasis on most frequent items

F_{0}, F_{1}

- $\mathrm{F}_{0}=\Sigma \mathrm{f}_{\mathrm{i}}{ }^{0}$
- We will define $0^{0}=0$ here
- $f_{i}^{0}=1$ if $f_{i}>0$
- Hence, F_{0} is just the number of items. See lecture 11
- $\mathrm{F}_{1}=\Sigma \mathrm{f}_{\mathrm{i}}{ }^{1}=\mathrm{N}$
$F_{2}=\Sigma f_{i}^{2}$
- A, B, B , A, C, D, A, D, B, A, A, D
- $f_{A}=5$
- $\mathrm{f}_{\mathrm{B}}=3$
- $\mathrm{f}_{\mathrm{C}}=1$
- $\mathrm{f}_{\mathrm{D}}=3$
- $\mathrm{F}_{2}=5^{2}+3^{2}+1^{2}+3^{2}=25+9+1+9=44$

Variance

- $\operatorname{Var}(\mathrm{X})=\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right]=\mathrm{E}\left[\mathrm{X}^{2}\right]-\mathrm{E}[\mathrm{X}]^{2}$
- Measure of the skew of the distribution

Join estimation

- F_{2} gives the number of pairs in the self join of R and R
- Also applies to the number of pairs in a join of R and S

Hash function assumption
Pairwise independence

- Assumptions on the hash function
- $\operatorname{Prob}[h(x)=-1]=0.5$
- $\operatorname{Prob}[h(x)=1]=0.5$
- Hash values are pairwise independent
- $\operatorname{Prob}[h(x)=h(y)]=1 / m$
- Knowing the value of $h(x)$ tells you nothing about the value of $h(y)$
- Independent random variables

Basic Algorithm - Tug-of-war algorithm

- Choose a random hash function $\mathrm{h}: \mathrm{U} \rightarrow\{-1,1\}$

```
Y = 0;
foreach x in stream
    Y += h(x);
return Y';
\[
Y=\sum_{j=1}^{M} f_{j} h(j)
\]
return \(\mathrm{Y}^{2}\);
```

Tug-of-war algorithm is a good estimator of F_{2}

- Result - Expected value of Y^{2} is F_{2}

Analysis $\quad Y=\sum_{j=1}^{M} f_{j} h(j)$

$$
\begin{aligned}
\mathbf{E}\left(Y^{2}\right) & =\mathbf{E}\left(\left(\sum_{j=1}^{M} f_{j} h(j)\right)^{2}\right) \\
& =\mathbf{E}\left(\sum_{i=1}^{M} \sum_{j=1}^{M} f_{i} h(i) f_{j} h(j)\right) \\
& =\mathbf{E}\left(\sum_{j=1}^{M} f_{j}^{2} h(j)^{2}+\sum_{i \neq j} f_{i} h(i) f_{j} h(j)\right) \\
& =\sum_{j=1}^{M} f_{j}^{2}+\sum_{i \neq j} f_{i} f_{j} \mathbf{E}(h(i) h(j))
\end{aligned}
$$

If X and Y are independent Random Variables, $E(X Y)=E(X) E(Y)$

For $i \neq j, \quad \operatorname{Prob}[h(i)=h(j)]=\frac{1}{2}$
$\mathbf{E}(h(i) h(j))=\mathbf{E}(h(i)) \mathbf{E}(h(j))=0 \cdot 0=0$

Improving the algorithm

- Space requirement is just one register
- Improve performance by using more space
- Compute multiple estimates using independent hash functions
- This is where generating multiple hash functions is important
- Two different ways of combining estimates
- $E=(1 / k)\left(E_{1}+E_{2}+\ldots E_{k}\right)$
- $\mathrm{E}^{\prime}=\operatorname{Median}\left(\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{k}}\right)$
- These two methods are combined to get the AKS algorithm

Deeper analysis, compute $\operatorname{Var}\left(\mathrm{Y}^{2}\right)$

$$
\begin{aligned}
\mathbf{E}\left(Y^{4}\right) & =\mathbf{E}\left(\left(\sum_{j=1}^{M} f_{j} h(j)\right)^{4}\right) \\
& =\mathbf{E}\left(\sum_{i=1}^{M} \sum_{j=1}^{M} \sum_{k=1}^{M} \sum_{\ell=1}^{M} f_{i} f_{j} f_{k} f_{\ell} h(i) h(j) h(k) h(\ell)\right) \\
& =\sum_{i=1}^{M} \sum_{j=1}^{M} \sum_{k=1}^{M} \sum_{\ell=1}^{M} f_{i} f_{j} f_{k} f_{\ell} \mathbf{E}(h(i) h(j) h(k) h(\ell))
\end{aligned}
$$

Need four-wise independence to simplify expectation expression

Carter-Wegman hash functions

- Hashing from [0..p-1] to [0..p-1]
- p is a moderate sized prime ($p \cong 2^{32}$)
- $h_{a b}(\mathrm{x})=(\mathrm{ax}+\mathrm{b}) \bmod \mathrm{p}$ where $0 \leq \mathrm{a}<\mathrm{p}$ and $0 \leq \mathrm{b}<\mathrm{p}$
- If a and b are chosen at random, $x \neq y$, then $\operatorname{Prob}\left[h_{a b}(x)=h_{a b}(y)\right]=\frac{1}{p}$
- $h_{a b}(x)$ and $h_{a b}(y)$ are independent

Overall result

- Efficient approximation for F_{2}
$\cdot(1+\varepsilon)$ approximation with probability at least (1- δ)
- Space requirement $O\left(\left(1 / \varepsilon^{2}\right) \log (1 / \delta)(\log M+\log N)\right)$
- Extend to higher moments

Pairwise independence

- Suppose $x \neq y$, and $0 \leq x, y \leq p-1$ and $0 \leq u, v \leq p-1$
- The equations (with unknowns a and b) have a unique solution
- $(a x+b) \bmod p=u$
- $(a y+b) \bmod p=v$
- Hence $\operatorname{Prob}[\mathrm{h}(\mathrm{x})=\mathrm{u}$ and $\mathrm{h}(\mathrm{y})=\mathrm{v}]=1 / \mathrm{p}^{2}$ proving independence
k-wise independence
- Hash functions such that $h\left(x_{1}\right), h\left(x_{2}\right), \ldots, h\left(x_{k}\right)$ are probabilistically independent
- Important mathematical tool to prove rigorous bounds
- Parameterized hash functions to allow random generation
- In practice, other hash functions may be used which have a seed that can be set

Generalized Carter-Wegman hash functions 4 -wise independence

- Hashing from [0..p-1] to [0..p-1]
- p is a moderate sized prime ($p \cong 2^{32}$)
- $h_{a b c d}(x)=\left(a x^{3}+b x^{2}+c x+d\right) \bmod p$ where $0 \leq a, b, c, d \leq p-1$
- Proof of independence is similar to the 2 -wise case.
- Show $h_{\text {abcd }}(w)=q, h_{a b c d}(x)=r, h_{\text {abcd }}(y)=s, h_{\text {abcd }}(z)=t$ has a unique solution for a, b, c, d over [0..p-1]

