CSEP 521: Applied Algorithms Lecture 12 - Stream Algorithms: Frequency Estimates

Richard Anderson February 11, 2021

Announcements

•

Frequency Moments

- Compute the sum of powers of frequency of elements
- Higher moments put more emphasis on most frequent items

F_0 , F_1

- $F_0 = \Sigma f_i^0$
 - We will define 00 = 0 here
 - $f_i^0 = 1$ if $f_i > 0$
 - Hence, F₀ is just the number of items. See lecture 11
- $F_1 = \Sigma f_i^1 = N$

$$F_2 = \sum f_i^2$$

- A, B, B, A, C, D, A, D, B, A, A, D
- f_A = 5
- f_B = 3
- f_c = 1
- f_D = 3
- $F_2 = 5^2 + 3^2 + 1^2 + 3^2 = 25 + 9 + 1 + 9 = 44$

Variance

- $Var(X) = E[(X-\mu)^2] = E[X^2] E[X]^2$
- Measure of the skew of the distribution

Join estimation

- F2 gives the number of pairs in the self join of R and R
- Also applies to the number of pairs in a join of R and S

Basic Algorithm – Tug-of-war algorithm

• Choose a random hash function h: $U \rightarrow \{-1, 1\}$

$$Y = \sum_{j=1}^{M} f_j h(j)$$

Hash function assumption Pairwise independence

- Assumptions on the hash function
 - Prob[h(x) = -1] = 0.5
 - Prob[h(x) = 1] = 0.5
- Hash values are pairwise independent

 - Prob[h(x) = h(y)] = 1/m
 Knowing the value of h(x) tells you nothing about the value of h(y)
 - · Independent random variables

Tug-of-war algorithm is a good estimator of F₂

• Result – Expected value of Y2 is F2

Analysis
$$Y = \sum_{j=1}^{M} f_j h(j)$$

$$\begin{split} \mathbf{E}(Y^2) &= \mathbf{E}((\sum_{j=1}^M f_j \; h(j))^2) \\ &= \mathbf{E}(\sum_{i=1}^M \sum_{j=1}^M f_i \; h(i) \; f_j \; h(j)) \\ &= \mathbf{E}(\sum_{j=1}^M f_j^2 \; h(j)^2 + \sum_{i \neq j} f_i \; h(i) \; f_j \; h(j)) \\ &= \sum_{j=1}^M f_j^2 + \sum_{i \neq j} f_i \; f_j \; \mathbf{E}(h(i)h(j)) \end{split}$$

If X and Y are independent Random Variables, E(XY) = E(X)E(Y)

For
$$i \neq j$$
, $Prob[h(i) = h(j)] = \frac{1}{2}$

$$\mathbf{E}(h(i)h(j)) = \mathbf{E}(h(i))\mathbf{E}(h(j)) = 0 \cdot 0 = 0$$

Improving the algorithm

- · Space requirement is just one register
- · Improve performance by using more space
- Compute multiple estimates using independent hash functions
- This is where generating multiple hash functions is important • Two different ways of combining estimates
 - E = (1/k)(E₁ + E₂ + . . . E_k)
 - E' = Median(E₁, E₂, . . . , E_k)
- These two methods are combined to get the AKS algorithm

Overall result

- ullet Efficient approximation for ${\sf F_2}$
 - (1 + ϵ) approximation with probability at least (1- δ)
 - Space requirement O((1/ ϵ^2) log (1/ δ)(log M + log N))
- · Extend to higher moments

Deeper analysis, compute Var(Y2)

$$\begin{split} \mathbf{E}(Y^4) &= \mathbf{E}((\sum_{j=1}^M f_j \ h(j))^4) \\ &= \mathbf{E}(\sum_{i=1}^M \sum_{j=1}^M \sum_{k=1}^M \sum_{\ell=1}^M f_i \ f_j \ f_k \ f_\ell \ h(i)h(j)h(k)h(\ell)) \\ &= \sum_{i=1}^M \sum_{i=1}^M \sum_{k=1}^M \sum_{\ell=1}^M f_i \ f_j \ f_k \ f_\ell \ \mathbf{E}(h(i)h(j)h(k)h(\ell)) \end{split}$$

Need four-wise independence to simplify expectation expression

Universal Family of Hash Functions

- · Really good practical hash functions exist

 - Fast and good distribution of keys
 Cryptographic hash functions are difficult to invert and more work
- Choose a random hash function
 Set of hash functions H: U→[1..m]
- Universal property
 For all x, y in U, with x ≠ y, if h is chosen at random from H

$$\operatorname{Prob}[h(x) = h(y)] \le \frac{1}{m}$$

- $\operatorname{Prob}[h(x)=h(y)] \leq \frac{1}{m}$ This is a minimal property for good hash functions Practical university families exist, so mathematically sound algorithms could be implemented

Carter-Wegman hash functions

- Hashing from [0..p-1] to [0..p-1]
- p is a moderate sized prime (p \cong 2³²)
- $h_{ab}(x) = (ax + b) \mod p$ where $0 \le a < p$ and $0 \le b < p$
- If a and b are chosen at random, $x \neq y$, then $Prob[h_{ab}(x) = h_{ab}(y)] = \frac{1}{n}$
- hab(x) and hab(y) are independent

Pairwise independence

- Suppose $x \neq y$, and $0 \le x$, $y \le p-1$ and $0 \le u$, $v \le p-1$
- The equations (with unknowns a and b) have a unique solution
 - (ax + b) mod p = u
 - (ay + b) mod p = v
- Hence Prob[h(x) = u and h(y) = v] = $1/p^2$ proving independence

k-wise independence

- Hash functions such that $h(x_1),\,h(x_2),\,\ldots,\,h(x_k)$ are probabilistically independent
- Important mathematical tool to prove rigorous bounds
- Parameterized hash functions to allow random generation
- In practice, other hash functions may be used which have a seed that can be set

Generalized Carter-Wegman hash functions 4-wise independence

- Hashing from [0..p-1] to [0..p-1]
- p is a moderate sized prime (p \cong 2³²)
- $h_{abcd}(x) = (ax^3 + bx^2 + cx + d) \mod p$ where $0 \le a, b, c, d \le p-1$
- Proof of independence is similar to the 2-wise case.
- Show $h_{abcd}(w) = q$, $h_{abcd}(x) = r$, $h_{abcd}(y) = s$, $h_{abcd}(z) = t$ has a unique solution for a, b, c, d over [0..p-1]