
CSEP 521: Applied Algorithms
Lecture 12 - Stream Algorithms:

Frequency Estimates
Richard Anderson

February 11, 2021

Announcements

•

Frequency Moments

• Compute the sum of powers of frequency of elements

• Higher moments put more emphasis on most frequent items

F0, F1

• F0 = fi
0

• We will define 00 = 0 here

• fi
0 = 1 if fi > 0

• Hence, F0 is just the number of items. See lecture 11

• F1 = fi
1 = N

F2 = fi
2

• A, B, B, A, C, D, A, D, B, A, A, D

• fA = 5

• fB = 3

• fC = 1

• fD = 3

• F2 = 52 + 32 + 12 + 32 = 25 + 9 + 1 + 9 = 44

Variance

• Var(X) = E[(X-)2] = E[X2] – E[X]2

• Measure of the skew of the distribution

Join estimation

• F2 gives the number of pairs in the self join of R and R

• Also applies to the number of pairs in a join of R and S

Basic Algorithm – Tug-of-war algorithm

• Choose a random hash function h: U {-1, 1}

Y = 0;

foreach x in stream s

Y += h(x);

return Y2;

Hash function assumption
Pairwise independence
• Assumptions on the hash function

• Prob[h(x) = -1] = 0.5

• Prob[h(x) = 1] = 0.5

• Hash values are pairwise independent
• Prob[h(x) = h(y)] = 1/m

• Knowing the value of h(x) tells you nothing about the value of h(y)

• Independent random variables

Tug-of-war algorithm is a good estimator of F2

• Result – Expected value of Y2 is F2

Analysis

If X and Y are independent random variables,
E(XY) = E(X)E(Y)

Improving the algorithm

• Space requirement is just one register

• Improve performance by using more space

• Compute multiple estimates using independent hash functions
• This is where generating multiple hash functions is important

• Two different ways of combining estimates
• E = (1/k)(E1 + E2 + . . . Ek)

• E’ = Median(E1, E2, . . . ,Ek)

• These two methods are combined to get the AKS algorithm

Overall result

• Efficient approximation for F2

• (1 + ε) approximation with probability at least (1-δ)

• Space requirement O((1/ ε2) log (1/ δ)(log M + log N))

• Extend to higher moments

Deeper analysis, compute Var(Y2)

Need four-wise independence to simplify expectation expression

• Really good practical hash functions exist
• Fast and good distribution of keys
• Cryptographic hash functions are difficult to invert and more work

• Choose a random hash function
• Set of hash functions H: U[1..m]

• Universal property
• For all x, y in U, with x y, if h is chosen at random from H

• This is a minimal property for good hash functions
• Practical university families exist, so mathematically sound algorithms could be

implemented

Universal Family of Hash Functions

Carter-Wegman hash functions

• Hashing from [0..p-1] to [0..p-1]

• p is a moderate sized prime (p 232)

• hab(x) = (ax + b) mod p where 0 ≤ a < p and 0 ≤ b < p

• If a and b are chosen at random, x y, then Prob[h (x) = h (y)] =
1

𝑝

• h (x) and h (y) are independent

Pairwise independence

• Suppose x y, and 0 ≤ x, y ≤ p – 1 and 0 ≤ u, v ≤ p – 1

• The equations (with unknowns a and b) have a unique solution
• (ax + b) mod p = u

• (ay + b) mod p = v

• Hence Prob[h(x) = u and h(y) = v] = 1/p2 proving independence

k-wise independence

• Hash functions such that h(x1), h(x2), . . ., h(xk) are probabilistically
independent

• Important mathematical tool to prove rigorous bounds

• Parameterized hash functions to allow random generation

• In practice, other hash functions may be used which have a seed that
can be set

Generalized Carter-Wegman hash functions
4-wise independence
• Hashing from [0..p-1] to [0..p-1]

• p is a moderate sized prime (p 232)

• habcd(x) = (ax3 + bx2 + cx + d) mod p where 0 ≤ a, b, c, d ≤ p-1

• Proof of independence is similar to the 2-wise case.

• Show habcd(w) = q, habcd(x) = r, habcd(y) = s, habcd(z) = t has a unique
solution for a, b, c, d over [0..p-1]

