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Announcements



Frequency Moments

 Compute the sum of powers of frequency of elements
* Higher moments put more emphasis on most frequent items
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*Fp= Zfio
* We will define 0° =0 here
¢ f0=1iff>0

* Hence, F,is just the number of items. See lecture 11



F, =3 f2

*A,B,B,ACDADBAAD

*f,=5

«f,=3

e f.=1

e fy=3
*F,=52+32+124+32=25+9+1+9=44



Variance

* Var(X) = E[(X-p)?] = E[X?] — E[X]?
 Measure of the skew of the distribution



Join estimation

* F, gives the number of pairs in the self join of R and R
* Also applies to the number of pairsin ajoin of Rand S



Basic Algorithm — Tug-of-war algorithm

 Choose a random hash function h: U — {-1, 1}

Y = O; M
foreach x i1in stream s Y — ijh(j)
Y += h(x); j=1

return Y?;



Hash function assumption
Pairwise independence

e Assumptions on the hash function
e Prob[h(x) =-1] =0.5
* Prob[h(x)= 1] =0.5

* Hash values are pairwise independent
* Prob[h(x) = h(y)] =1/m
* Knowing the value of h(x) tells you nothing about the value of h(y)
* Independent random variables



Tug-of-war algorithm is a good estimator of F,

* Result — Expected value of Y2 is F,



M
Analysis V=) fih()
j=1

M
=E()_ £ 1))
j=1
M M
— E(Z Z fi h(i) [ h(j))
e
1#£]



If Xand Y are independent random variables,
E(XY) = E(X)E(Y)

1
For i # j, Problh(i) =h(j)| = 5

E(h(i)h(j)) = E(h(i))E(h(j)) = 0-0=0



Improving the algorithm

* Space requirement is just one register
* Improve performance by using more space

 Compute multiple estimates using independent hash functions
* This is where generating multiple hash functions is important

* Two different ways of combining estimates
* E=(1/k)(E;+E,+...E)
* B’ = Median(E,, E,, ... ,E,)

* These two methods are combined to get the AKS algorithm



Overall result

* Efficient approximation for F,
* (1 + €) approximation with probability at least (1-6)
» Space requirement O((1/ €2) log (1/ 6)(log M + log N))

* Extend to higher moments



Deeper analysis, compute Var(Y?)
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Need four-wise independence to simplify expectation expression



Universal Family of Hash Functions

* Really good practical hash functions exist
* Fast and good distribution of keys
* Cryptographic hash functions are difficult to invert and more work

* Choose a random hash function
* Set of hash functions H: U—[1..m]

* Universal property
e Forallx,yin U, withx=y, if hischosen at random from H

1
Prob|h(x) = h(y) < —
m

* This is a minimal property for good hash functions

* Practical university families exist, so mathematically sound algorithms could be
implemented



Carter-Wegman hash functions

* Hashing from [0..p-1] to [0..p-1]
* p is a moderate sized prime (p = 23?)
* h,(x) =(ax+b) mod pwhere0<a<pand0<b<p

1

* If aand b are chosen at random, x # vy, then Prob[h (x) = h(y)] = D

* h(x) and h (y) are independent



Pairwise independence

e Suppose x#y, and0<x,y<p—-1andO<u,v<p-1

* The equations (with unknowns a and b) have a unique solution
e (ax+b)mod p=u
e (ay+b)modp=v

* Hence Prob[h(x) = u and h(y) = v] = 1/p? proving independence



kK-wise independence

* Hash functions such that h(x,), h(x,), . . ., h(x,) are probabilistically
independent

* Important mathematical tool to prove rigorous bounds

* Parameterized hash functions to allow random generation

* In practice, other hash functions may be used which have a seed that
can be set



Generalized Carter-Wegman hash functions
4-wise independence

* Hashing from [0..p-1] to [0..p-1]
* p is a moderate sized prime (p = 23?)
* h,,.4(x) = (ax? + bx? + cx + d) mod p where 0< a, b, ¢, d < p-1

* Proof of independence is similar to the 2-wise case.

* Show h_, 4(w) =q, h,,4(X) =1, h4(Y) =5, h,,4(z) =t has a unique
solution for a, b, ¢, d over [0O..p-1]



