CSEP 521: Applied Algorithms Lecture 11 Stream Algorithms: Hyperloglog
 Richard Anderson
 February 9, 2021

Announcements

- HW6

- Implement count min and test on provided dataset
- Course material - streaming algorithms
- Today: Count number of distinct elements: Hyperloglog
- Thursday: Determine the second moment
- $\Sigma f_{x}{ }^{2}$
- Alon, Matias, Szegedy

Algorithms for data streams

- Data items received one at a time, N is number of items received
- Computation performed on each data item
- Memory is limited to being much less than N
- Memory in thousands
- Data in millions
- Motivation
- Large scale computation
- Estimates are often good enough

Results so far

- Easy things that require little memory
- Computing the maximum, sample a random element
- Impossible things (provably require $\Omega(\mathrm{n})$ memory)
- Is there an element with frequency $\geq \mathrm{n} / 3$, find the median
- Identification and approximate estimates of high frequency items

Warmup

- Suppose we want to track j smallest items in a stream
- Space complexity
- Time complexity

Count distinct problem

- FB Distinct visitors per week
- How many distinct IP addresses accesses a website

Solutions

- Sort, remove duplicates
- sort - u foo.txt \| wc
- Hashing
- Bloom Filter

Estimator

- Assign each distinct element a random value, in $[0,1)$
- By hashing, of course
- Each copy of the same item has the same hash value
- Compute the minimum value: min_val
- Only remember a single data item
- If the number of distinct items is K, the expected value of min_val is 1/K
- Report the estimate $1 / m i n _v a l$

Improve the estimator

- Track the J smallest values
- J values need to be maintained
- Compute min_val」
- Expected value of min_val, is J / K
- Report estimate of J/min_val ${ }_{j}$
- Probabilistically, this is a far more robust estimator

Hyperloglog

- Estimate number of distinct elements
- Estimate cardinalities of $>10^{9}$ with accuracy 2% using 1.5 kB of memory
- Derived from a 1984 theoretical result
- Suggested practical applications in early 2000s
- Derivatives are now used as a practical tool by large internet companies
- APPROX_COUNT_DISTINCT in BigQuery
- Reddit, to count unique views of posts
- From this discussion
- Key ideas
- Basic algorithm
- But the analysis still contains some magic

Log Log idea

- What is the probability that a random number has exactly k consecutive one's (in binary) in low order bits
- 1010001010010100100100100111
- Define $\rho(x)$ as consecutive ones at end of hash(x)
- Estimate the cardinality of $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ as 2^{Q} where $Q=\max \left\{\rho\left(x_{1}\right), \rho\left(x_{2}\right), \ldots, \rho\left(x_{M}\right)\right\}$
- $\rho(x)=k$ with probability $2^{-(k+1)}$
- Q is an estimate of $\log M$, so Q can be stored in $\log \log M$ bits

Intuition

- If you have one million items, one of them is going to have a hash that ends in: 01111111111111111111

Strengthening the estimate

- Risk of over estimating with a very unlikely hash
- If we have 2^{k} distinct items, we expect to have items of that have hashes that end with j consecutive 1 's for $\mathrm{j} \leq \mathrm{k}$
- We will need to track all the ρ values, which we will do by keep a bitwise-or

Some bit hacking

- $r(x)$ is the number of trailing 1 s in the binary representation of x
- $R(x)=2^{r(x)}$
- $R(x)=\sim x$ \& $(x+1)$

$$
\begin{array}{cccccccccccccccccc}
\mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & x \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \sim x \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & x+1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \sim x \&(x+1)
\end{array}
$$

Probabilistic Counting Trace

x	$r(x)$	$R(x)$	sketch
01100010011000111010011110111011	2	100	00000000000000000000000000000100
01100111001000110001111100000101	1	10	00000000000000000000000000000110
00010001000111000110110110110011	2	100	00000000000000000000000000000110
01000100011101110000000111011111	5	100000	00000000000000000000000000100110
01101000001011000101110001000100	0	1	00000000000000000000000000100111
0011011110110000000101001010101	1	10	00000000000000000000000000100111
00110100011000111010101111111100	0	1	00000000000000000000000000100111
00011000010000100001011100110111	3	1000	00000000000000000000000000101111
00011001100110011110010000111111	6	1000000	00000000000000000000000001101111
01000101110001001010110011111100	0	1	00000000000000000000000001101111
			$R($ sketch $)=100002$
			16

Probabilistic Counting

```
public long R(long x) {
    return ~x & (x+1);
}
public long estimate (iterable<string> stream){
    long sketch;
    for (s : stream)
            sketch |= R(Hash(s));
    return R(sketch);
}
```

- Returns the smallest value not seen
- It can be shown that this off by a factor of 0.77351
- Established mathematically, and verified experimentally
- Typically off by a binary order of magnitude

Next idea - M independent experiments

- M independent hash functions and average: work, but expensive
- Stochastic averaging
- Divide stream into 2^{m} independent streams
- Use probabilistic counting on each stream, yielding 2^{m} sketches
- Compute mean = average number of trailing bits in each sketch
- Return $2^{\text {mean }} / .77531$

Constructing the independent experiments

- Assume we have a j bit has function (so hashing to [0..2j-1])
- Use the first m bits to divide into substreams
- Use the remaining j-m bits as a hash function (into [0.. $\left.2^{j-m}-1\right]$)

1010100010101010001010
0100010101010101001111
0101010101011101110011
1001010100110010010001
0010010101000100100010
1101000101000101001011
1001001011101101110101
1010110111011000100111

Probabilistic Counting Algorithms

- Flajolet-Martin, 1983
- Use of M words to achieve relative accuracy of $0.78 /$ sqrt(M)
- Validated through experimentation
- Theory doesn't answer questions such as performance with real hash functions or what are the implementational constants
- Many versions now available with modified techniques
- E.g., different mechanisms for averaging estimates across substreams, harmonic means vs. geometric means

