CSEP 521: Applied Algorithms Lecture 11 Stream Algorithms: Hyperloglog

Richard Anderson

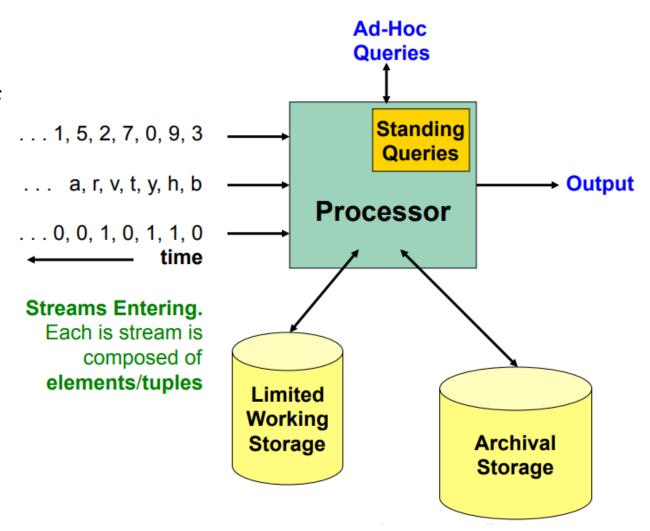
February 9, 2021

Announcements

- HW6
 - Implement count min and test on provided dataset
- Course material streaming algorithms
 - Today: Count number of distinct elements: Hyperloglog
 - Thursday: Determine the second moment
 - $\sum f_x^2$
 - Alon, Matias, Szegedy

Algorithms for data streams

- Data items received one at a time, N is number of items received
- Computation performed on each data item
- Memory is limited to being much less than N
 - Memory in thousands
 - Data in millions
- Motivation
 - Large scale computation
 - Estimates are often good enough



Results so far

- Easy things that require little memory
 - Computing the maximum, sample a random element
- Impossible things (provably require $\Omega(n)$ memory)
 - Is there an element with frequency $\geq n/3$, find the median
- Identification and approximate estimates of high frequency items

Warmup

- Suppose we want to track j smallest items in a stream
 - Space complexity
 - Time complexity

Count distinct problem

- FB Distinct visitors per week
- How many distinct IP addresses accesses a website

Solutions

- Sort, remove duplicates
 - sort –u foo.txt | wc
- Hashing
- Bloom Filter

Estimator

- Assign each distinct element a random value, in [0, 1)
 - By hashing, of course
 - Each copy of the same item has the same hash value
- Compute the minimum value: min_val
 - Only remember a single data item
- If the number of distinct items is K, the expected value of min_val is
 1/K
- Report the estimate 1/min_val

Improve the estimator

- Track the J smallest values
 - J values need to be maintained
 - Compute min_val₁
- Expected value of min_val₁ is J/K
- Report estimate of J/min_val_j
- Probabilistically, this is a far more robust estimator

Hyperloglog

- Estimate number of distinct elements
 - Estimate cardinalities of $> 10^9$ with accuracy 2% using 1.5 kB of memory
- Derived from a 1984 theoretical result
- Suggested practical applications in early 2000s
- Derivatives are now used as a practical tool by large internet companies
 - APPROX COUNT DISTINCT in BigQuery
 - Reddit, to count unique views of posts
- From this discussion
 - Key ideas
 - Basic algorithm
 - But the analysis still contains some magic

Log Log idea

- What is the probability that a random number has exactly k consecutive one's (in binary) in low order bits
 - 10100010100100100100100111
 - Define $\rho(x)$ as consecutive ones at end of hash(x)
- Estimate the cardinality of $\{x_1, x_2, ..., x_M\}$ as 2^Q where $Q = \max\{\rho(x_1), \rho(x_2), ..., \rho(x_M)\}$
- $\rho(x) = k$ with probability $2^{-(k+1)}$
- Q is an estimate of log M, so Q can be stored in log log M bits

Intuition

• If you have one million items, one of them is going to have a hash that ends in: 011111111111111111111

Strengthening the estimate

- Risk of over estimating with a very unlikely hash
- If we have 2^k distinct items, we expect to have items of that have hashes that end with j consecutive 1's for $j \le k$
- We will need to track all the ρ values, which we will do by keep a bitwise-or

Some bit hacking

- r(x) is the number of trailing
 1s in the binary
 representation of x
- $R(x) = 2^{r(x)}$
- $R(x) = ^{\sim}x & (x+1)$

```
      0
      1
      1
      0
      1
      0
      1
      0
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
```

Probabilistic Counting Trace

		54.	
X	r(x)	R(x)	sketch
011000100110001110100111101110 11	2	100	0000000000000000000000000000000000 1 00
0110011100100011000111110000010 1	1	10	$00000000000000000000000000001 \textcolor{red}{\bf 10}$
000100010001110001101101101100 11	2	100	000000000000000000000000000000000000
01000100011101110000000111011111	. 5	100000	000000000000000000000000000000000000
01101000001011000101110001000100	0	1	0000000000000000000000000111
001101111011000000010100101010101	1	10	00000000000000000000000001001 1 1
00110100011000111010101111111100	0	1	0000000000000000000000000011 1
00011000010000100001011100110111	. 3	1000	0000000000000000000000000010 1 111
00011001100110011110010000111111	. 6	1000000	00000000000000000000000000000001101111
0100010111000100101100111111100	0	1	00000000000000000000000110 1111

 $R(sketch) = 10000_2$

= 16

Probabilistic Counting

- Returns the smallest value not seen
- It can be shown that this off by a factor of 0.77351
 - Established mathematically, and verified experimentally
- Typically off by a binary order of magnitude

Next idea – M independent experiments

- M independent hash functions and average: work, but expensive
- Stochastic averaging
 - Divide stream into 2^m independent streams
 - Use probabilistic counting on each stream, yielding 2^m sketches
 - Compute mean = average number of trailing bits in each sketch
 - Return 2^{mean} / .77531

Constructing the independent experiments

- Assume we have a j bit has function (so hashing to [0..2^j-1])
- Use the first m bits to divide into substreams
- Use the remaining j-m bits as a hash function (into [0..2^{j-m}-1])

Probabilistic Counting Algorithms

- Flajolet-Martin, 1983
- Use of M words to achieve relative accuracy of 0.78/sqrt(M)
- Validated through experimentation
 - Theory doesn't answer questions such as performance with real hash functions or what are the implementational constants
- Many versions now available with modified techniques
 - E.g., different mechanisms for averaging estimates across substreams, harmonic means vs. geometric means