
CSEP 521: Applied Algorithms
Lecture 11

Stream Algorithms: Hyperloglog
Richard Anderson

February 9, 2021

Announcements

• HW6
• Implement count min and test on provided dataset

• Course material – streaming algorithms
• Today: Count number of distinct elements: Hyperloglog

• Thursday: Determine the second moment
•  fx

2

• Alon, Matias, Szegedy

Algorithms for data streams

• Data items received one
at a time, N is number of
items received

• Computation performed
on each data item

• Memory is limited to
being much less than N
• Memory in thousands
• Data in millions

• Motivation
• Large scale computation
• Estimates are often good

enough

Results so far

• Easy things that require little memory
• Computing the maximum, sample a random element

• Impossible things (provably require (n) memory)
• Is there an element with frequency ≥ n/3, find the median

• Identification and approximate estimates of high frequency items

Warmup

• Suppose we want to track j smallest items in a stream
• Space complexity

• Time complexity

Count distinct problem

• FB Distinct visitors per week

• How many distinct IP addresses accesses a website

Solutions

• Sort, remove duplicates
• sort –u foo.txt | wc

• Hashing

• Bloom Filter

public int CountUnique(List<string> strings){

Dictionary<string, int> dict

= new Dictionary<string, int>();

foreach (string str in strings)

dict.TryAdd(str, 1);

return dict.Count;

}

Estimator

• Assign each distinct element a random value, in [0, 1)
• By hashing, of course

• Each copy of the same item has the same hash value

• Compute the minimum value: min_val
• Only remember a single data item

• If the number of distinct items is K, the expected value of min_val is
1/K

• Report the estimate 1/min_val

Improve the estimator

• Track the J smallest values
• J values need to be maintained

• Compute min_valJ

• Expected value of min_valJ is J/K

• Report estimate of J/min_valj

• Probabilistically, this is a far more robust estimator

Hyperloglog

• Estimate number of distinct elements
• Estimate cardinalities of > 109 with accuracy 2% using 1.5 kB of memory

• Derived from a 1984 theoretical result
• Suggested practical applications in early 2000s
• Derivatives are now used as a practical tool by large internet companies

• APPROX_COUNT_DISTINCT in BigQuery
• Reddit, to count unique views of posts

• From this discussion
• Key ideas
• Basic algorithm
• But the analysis still contains some magic

Log Log idea

• What is the probability that a random number has exactly k
consecutive one’s (in binary) in low order bits
• 1010001010010100100100100111

• Define (x) as consecutive ones at end of hash(x)

• Estimate the cardinality of {x1, x2, . . ., xM} as 2Q where
Q = max{(x1) , (x2) ,…, (xM) }

• (x) = k with probability 2-(k+1)

• Q is an estimate of log M, so Q can be stored in log log M bits

Intuition

• If you have one million items, one of them is going to have a hash
that ends in: 01111111111111111111

Strengthening the estimate

• Risk of over estimating with a very unlikely hash

• If we have 2k distinct items, we expect to have items of that have
hashes that end with j consecutive 1’s for j ≤ k

• We will need to track all the  values, which we will do by keep a
bitwise-or

Some bit hacking

• r(x) is the number of trailing
1s in the binary
representation of x

• R(x) = 2r(x)

• R(x) = ~x & (x+1)

Probabilistic Counting Trace

Probabilistic Counting
• Returns the smallest value

not seen

• It can be shown that this off
by a factor of 0.77351
• Established mathematically,

and verified experimentally

• Typically off by a binary
order of magnitude

public long R(long x) {

return ~x & (x+1);

}

public long estimate (iterable<string> stream){

long sketch;

for (s : stream)

sketch |= R(Hash(s));

return R(sketch);

}

Next idea – M independent experiments

• M independent hash functions and average: work, but expensive

• Stochastic averaging
• Divide stream into 2m independent streams

• Use probabilistic counting on each stream, yielding 2m sketches

• Compute mean = average number of trailing bits in each sketch

• Return 2mean / .77531

Constructing the independent experiments

• Assume we have a j bit has function (so hashing to [0..2j-1])

• Use the first m bits to divide into substreams

• Use the remaining j-m bits as a hash function (into [0..2j-m-1])

1010100010101010001010
0100010101010101001111
0101010101011101110011
1001010100110010010001
0010010101000100100010
1101000101000101001011
1001001011101101110101
1010110111011000100111

Probabilistic Counting Algorithms

• Flajolet-Martin, 1983

• Use of M words to achieve relative accuracy of 0.78/sqrt(M)

• Validated through experimentation
• Theory doesn’t answer questions such as performance with real hash

functions or what are the implementational constants

• Many versions now available with modified techniques
• E.g., different mechanisms for averaging estimates across substreams,

harmonic means vs. geometric means

