CSEP 521: Applied Algorithms Lecture 10

Stream Algorithms: Heavy Hitters

Richard Anderson

February 4, 2021

Announcements

Algorithms for data streams

Formal stream model

- Data items received one at a time, N is number of items received
- Computation performed on each data item
- Memory is limited to being much less than N
- It may be a constant b, or log N
- Think of b in thousands (or millions), N in billions (or gazillions)
- Low runtime per item and stay within memory bounds

Heavy Hitters Problem

n/k – εn n/k						
No	Maybe	Yes				

- Find elements which occur at least n/k times
 - Cannot be solved exactly for $k \ge 3$
- ε-Heavy Hitters: Approximation algorithm for Heavy Hitters
- Parameters k, ϵ and δ :
 - Every value that occurs at least n/k times in A is in the list
 - Every value on the list occurs at least $n/k \epsilon n$ times in A.
 - Probability of not achieving this is at most $\boldsymbol{\delta}$

Count Min Sketch

- Simple data structure for estimating the number of occurrence of items
- Looks like a counting Bloom filter
- Counts provide an UPPER BOUND for number of occurrences
- Only accurate for counting the most frequent values
- Term "sketch" is used in streaming to refer to saving just a small amount of info as the data goes by

Multiple hash functions

- k hash tables with independent hash functions $h_1(x) \dots h_k(x)$
 - We can think of k=5
- Each table has b buckets, where b << n
 - We can think of b = 1000
 - Int HT[k][b]
- Inc(x), add one to each counter for x, HT[j][h_i(x)]++
- Count(x), min(HT[1][h₁(x)], HT[2][h₂(x)], . . . HT[k][h_k(x)])
- Upperbound on the count (but can easily be wrong)

Example

	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)	h ₅ (x)
А	9	2	10	2	5
В	1	7	4	7	3
С	3	10	7	10	9
D	7	3	10	7	3
E	1	10	7	4	2
F	6	9	8	4	1
G	10	6	9	5	2
Н	7	4	7	6	1

1		1			2	3	
	3		2		1		1
			1		1		<mark>3+2</mark>
	3				1+2		1
		1+2		3		1	

Sequence: A, B, C, D, A, D, A

Example

	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)	h ₅ (x)
A (16)	9	2	10	2	5
B (10)	1	7	4	7	3
C (6)	6	10	7	10	9
D (17)	7	3	10	7	3
E (2)	1	10	7	4	2
F (16)	6	9	8	4	1
G (6)	10	6	9	5	2
H (6)	7	4	7	6	1
I (4)	9	2	1	2	7
J (3)	4	9	3	9	8
K (5)	2	8	8	6	5

12	5		3		22	24		20	6
	22	17	6		6	10	5	19	8
4		3	10			14	21	6	33
	25		18	6	6	27		3	6
22	8	27		21		4	3	6	

A: 20, 22, 33, 25, 21 D: 24, 17, 33, 27, 27 F: 22, 19, 21, 18, 22

Sequence: A, B, C, D, A, D, A, J, A, I, D, B, F, G, G, H, E, B, A, K, A, B, A, A, D, D, D, C, I, A, B, C, D, E, F, G, K, H, G, H, B, D, D, K, H, A, B, I, D, A, D, A, B, C, C, D, A, F, F, F, I, F, F, G, H, A, B, D, K, D, D, A, K, B, C, F, G, H, F, F, J, J, F, D, F, A, F, F, F

Heuristic Error Analysis

- f_x is the true frequency count for x
- Single row analysis
- If we're lucky, HT[h(x)] will be the true count, f_x
- If we're unlucky, y collides with x, then f_v contributes to HT[h(x)]
- In general, $HT[h(x)] = f_x + \sum_s f_y$ where $s = \{y \neq x : h(x) = h(y)\}$
- With a good hash function h, x collides with an expected 1/b elements
- Therefore, we expect

$$HT[h(x)] = f_x + \frac{1}{b} \sum_{y \neq x} f_y \le f_x + \frac{n}{b}$$

Lemma

- Let X be a positive random variable with expectation E[X] = C
- The probability that X is greater than 2C is at most one half

Error analysis

$$\operatorname{Prob}\left[HT[h(x)] > f_x + \frac{2n}{b}\right] \le \frac{1}{2}$$

• Now consider k hash tables

$$\operatorname{Prob}\left[\min_{i=1}^{k} HT[i][h_i(x)] > f_x + \frac{2n}{b}\right] = \prod_{i=1}^{k} \operatorname{Prob}\left[HT[i][h_i(x)] > f_x + \frac{2n}{b}\right] \le \left(\frac{1}{2}\right)^k$$

- If we want error δ , we need $k \ge \log (1/\delta)$
- For δ = .01 this is k = 7
- For ϵ -Heavy Hitters, we want error at most ϵn , we take $b = 1/\epsilon$

Rigorous analysis (see 2.5 in the notes)

- What we've covered up: choosing random hash functions
- Universal family of hash functions
- Markov's Inequality

Universal Family of Hash Functions

- Really good practical hash functions exist
 - Fast and good distribution of keys
 - Cryptographic hash functions are difficult to invert and more work
- Choose a random hash function
 - Set of hash functions $H: U \rightarrow [1..m]$
- Universal property
 - For all x, y in U, with $x \neq y$, if h is chosen at random from H

$$\operatorname{Prob}[h(x) = h(y)] \le \frac{1}{m}$$

- This is a minimal property for good hash functions
- Practical university families exist, so mathematically sound algorithms could be implemented

Carter-Wegman hash functions

- Hashing from [0..m-1] to [0..m-1]
- Choose prime p, p >> m
- $h_{ab}(x) = ((ax + b) \mod p) \mod m)$ where $1 \le a < p$ and $0 \le b < p$
- If a and b are chosen at random, $x \neq y$, then $Prob[h_{ab}(x) = h_{ab}(y)] = 1/m$

Markov's Inequality

• If X is a non-negative random variable and $c \ge 1$ is a constant

$$\operatorname{Prob}[X > c \cdot E[X]] \le \frac{1}{c}$$

• Crude method from converting from expectation to probability

ε-Heavy Hitters

- Find elements which occur at least n/k times with error range εn
- Parameters k and ε:
 - Every value that occurs at least n/k times in A is in the list
 - Every value on the list occurs at least $n/k \epsilon n$ times in A.
- Choose $\varepsilon = 1/2k$
- For CountMin, we take b = $1/\epsilon$ and with j hash functions, where j = log $(1/\delta)$
- Reasonable practical values are k=100 and δ =.01, so this is a table of size 1000 for an n as large as you want!

Tracking the heavy hitters

- Note that we don't even need to know what n is.
- We track the values of the potential heavy hitters as the algorithm runs
- The easiest way is to just keep the values on the ε-heavy hitters list in a heap as there are at most 2k of these values (independent of n)

$2^{10} \simeq 10^3$

Big numbers

- What is the biggest value of N we need to worry about as an input size
- What is an appropriate domain, [0..m-1] for a hash function

- Big numbers:
 - Number of US social security numbers 10⁹
 - Populations of India, China: 1.4 Billion
 - World Population: 7.8 Billion
 - Stars in Galaxy 10¹²
 - Galaxies in Universe 10¹²
- $\log \log 2^{64} = \log 64 = 6$

More on hash functions

- Hashing from [1..m] to [1..t]
- Considerations
 - Uniformity, "randomness"
 - Sensitive to small changes
 - Speed
- Cryptographic security
- Hashing from U to [1..m]
 - Avoid losing information
 - Avoid regular collisions
 - Combine words with operations such as SHIFT and XOR
- You shouldn't have to invent or code your hash functions

- Multiplicative approaches to hash functions are common
 - But have some risks on poor choices of multipliers
 - Saving middle part of multiplication is common
- Bitwise operations such as XOR, <<,
 >>
- Common to have algorithms based on particular key numbers
 - a=11400714819323198485 for Fibonacci hashing
 - Power of two close to 2⁶⁴

```
Sample hash function:
Fowler-Noll-Vo
```

```
algorithm fnv-1 is
    hash := FNV_offset_basis
```

for each byte_of_data to be hashed do
 hash := hash × FNV_prime
 hash := hash XOR byte_of_data

return hash

- The FNV_offset_basis is the 64-bit FNV offset basis value: 14695981039346656037.
- The FNV_prime is the 64-bit FNV prime value: 1099511628211.
- 64-bit unsigned arithmetic, so multiplication is mod 2⁶⁴

Coming attractions . . .

• Hyperloglog