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Announcements



Algorithms for data streams

• Data items received one 
at a time, N is number of 
items received

• Computation performed 
on each data item

• Memory is limited to 
being much less than N
• Memory in thousands

• Data in millions



Formal stream model

• Data items received one at a time, N is number of items received

• Computation performed on each data item

• Memory is limited to being much less than N

• It may be a constant b, or log N

• Think of b in thousands (or millions),  N in billions (or gazillions)

• Low runtime per item and stay within memory bounds



Heavy Hitters Problem

• Find elements which occur at least n/k times
• Cannot be solved exactly for k ≥ 3

• ε-Heavy Hitters: Approximation algorithm for Heavy Hitters

• Parameters k, ε and δ:
• Every value that occurs at least n/k times in A is in the list

• Every value on the list occurs at least n/k – εn times in A.

• Probability of not achieving this is at most δ

n/k – εn n/k

YesNo Maybe



Count Min Sketch

• Simple data structure  for estimating the number of occurrence of 
items

• Looks like a counting Bloom filter

• Counts provide an UPPER BOUND for number of occurrences

• Only accurate for counting the most frequent values

• Term “sketch” is used in streaming to refer to saving just a small 
amount of info as the data goes by



Multiple hash functions

• k hash tables with independent hash functions h1(x) . . . hk(x)
• We can think of k=5

• Each table has b buckets,  where b << n
• We can think of b = 1000
• Int HT[k][b]

• Inc(x),  add one to each counter for x,  HT[j][hj(x)]++

• Count(x),  min(HT[1][h1(x)], HT[2][h2(x)], . . . HT[k][hk(x)])

• Upperbound on the count (but can easily be wrong)



Example

1 1 2 3

3 2 1 1

1 1 3+2

3 1+2 1

1+2 3 1

h1(x) h2(x) h3(x) h4(x) h5(x)

A 9 2 10 2 5

B 1 7 4 7 3

C 3 10 7 10 9

D 7 3 10 7 3

E 1 10 7 4 2

F 6 9 8 4 1

G 10 6 9 5 2

H 7 4 7 6 1

Sequence:  A, B, C, D, A, D, A



Example
12 5 3 22 24 20 6

22 17 6 6 10 5 19 8

4 3 10 14 21 6 33

25 18 6 6 27 3 6

22 8 27 21 4 3 6

h1(x) h2(x) h3(x) h4(x) h5(x)

A (16) 9 2 10 2 5

B (10) 1 7 4 7 3

C (6) 6 10 7 10 9

D (17) 7 3 10 7 3

E (2) 1 10 7 4 2

F (16) 6 9 8 4 1

G (6) 10 6 9 5 2

H (6) 7 4 7 6 1

I  (4) 9 2 1 2 7

J  (3) 4 9 3 9 8

K (5) 2 8 8 6 5

Sequence:  A, B, C, D, A, D, A, J, A, I, D, B, F, G, G, H, E, B, A, K, A, B, A, A, D, D, D, C, I, A, B, C, D, E, F, G, K, 
H, G, H, B, D, D, K, H, A, B, I, D, A, D, A, B, C, C, D, A, F, F, F, I, F, F, F, G, H, A, B, D, K, D, D, D, A, K, B, C, F, G,
H, F, F, J, J, F, D, F, A, F, F, F

A: 20, 22, 33, 25, 21
D: 24, 17, 33, 27, 27
F: 22, 19, 21, 18, 22  



Heuristic Error Analysis

• fx is the true frequency count for x

• Single row analysis

• If we’re lucky,  HT[h(x)] will be the true count, fx

• If we’re unlucky, y collides with x, then fy contributes to HT[h(x)]

• In general,  HT[h(x)] = fx + sfy where s = {yx : h(x) = h(y)}

• With a good hash function h, x collides with an expected 1/b elements

• Therefore, we expect



Lemma

• Let X be a positive random variable with expectation E[X] = C

• The probability that X is greater than 2C is at most one half



Error analysis

• Applying the lemma

• Now consider k hash tables

• If we want error δ, we need k ≥ log (1/δ)

• For δ = .01 this is k = 7

• For ε-Heavy Hitters, we want error at most εn, we take b = 1/ε



Rigorous analysis (see 2.5 in the notes)

• What we’ve covered up: choosing random hash functions

• Universal family of hash functions

• Markov’s Inequality



• Really good practical hash functions exist
• Fast and good distribution of keys
• Cryptographic hash functions are difficult to invert and more work

• Choose a random hash function
• Set of hash functions H: U[1..m]

• Universal property
• For all x, y in U, with x  y,  if h is chosen at random from H

• This is a minimal property for good hash functions
• Practical university families exist,  so mathematically sound algorithms could be 

implemented

Universal Family of Hash Functions



Carter-Wegman hash functions

• Hashing from [0..m-1] to [0..m-1]

• Choose prime p,  p >> m

• hab(x) = ((ax + b) mod p) mod m) where 1 ≤ a < p and 0 ≤ b < p

• If a and b are chosen at random, x  y, then Prob[hab(x) = hab(y)] = 1/m



Markov’s Inequality

• If X is a non-negative random variable and c ≥ 1 is a constant

• Crude method from converting from expectation to probability



ε-Heavy Hitters

• Find elements which occur at least n/k times with error range εn

• Parameters k and ε:
• Every value that occurs at least n/k times in A is in the list
• Every value on the list occurs at least n/k – εn times in A.

• Choose ε = 1/2k

• For CountMin, we take b = 1/ε and with j hash functions, where             
j = log (1/δ)

• Reasonable practical values are k=100 and δ=.01,  so this is a table of 
size 1000 for an n as large as you want! 



Tracking the heavy hitters

• Note that we don’t even need to know what n is.

• We track the values of the potential heavy hitters as the algorithm 
runs

• The easiest way is to just keep the values on the ε-heavy hitters list in 
a heap as there are at most 2k of these values (independent of n)



Big numbers

• What is the biggest value of N we need to worry about as an input size

• What is an appropriate domain, [0..m-1] for a hash function

• Big numbers:
• Number of US social security numbers 109

• Populations of India,  China: 1.4 Billion
• World Population: 7.8 Billion
• Stars in Galaxy 1012

• Galaxies in Universe 1012

• log log 264 = log 64 = 6

210  103

Answer: 264



More on hash functions

• Hashing from [1..m] to [1..t]
• Considerations

• Uniformity,  “randomness”
• Sensitive to small changes
• Speed

• Cryptographic security
• Hashing from U to [1..m]

• Avoid losing information
• Avoid regular collisions
• Combine words with operations such 

as SHIFT and XOR

• You shouldn’t have to invent or 
code your hash functions

• Multiplicative approaches to hash 
functions are common
• But have some risks on poor choices 

of multipliers
• Saving middle part of multiplication is 

common

• Bitwise operations such as XOR, <<, 
>>

• Common to have algorithms based 
on particular key numbers
• a=11400714819323198485 for 

Fibonacci hashing
• Power of two close to 264



Sample hash function:
Fowler-Noll-Vo

• The FNV_offset_basis is the 64-bit FNV offset basis value: 14695981039346656037.

• The FNV_prime is the 64-bit FNV prime value: 1099511628211.

• 64-bit unsigned arithmetic,  so multiplication is mod 264



Coming attractions . . .

• Hyperloglog


