CSEP 521: Applied Algorithms Lecture 10
Stream Algorithms: Heavy Hitters
Richard Anderson
February 4, 2021

Announcements

Algorithms for data streams

- Data items received one at a time, N is number of items received
- Computation performed on each data item
- Memory is limited to being much less than N
- Memory in thousands
- Data in millions

Formal stream model

- Data items received one at a time, N is number of items received
- Computation performed on each data item
- Memory is limited to being much less than N
- It may be a constant b, or $\log \mathrm{N}$
- Think of b in thousands (or millions), N in billions (or gazillions)
- Low runtime per item and stay within memory bounds

Heavy Hitters Problem

- Find elements which occur at least n / k times
- Cannot be solved exactly for $\mathrm{k} \geq 3$
- ε-Heavy Hitters: Approximation algorithm for Heavy Hitters
- Parameters k, ε and δ :
- Every value that occurs at least n / k times in A is in the list
- Every value on the list occurs at least $n / k-\varepsilon n$ times in A.
- Probability of not achieving this is at most δ

Count Min Sketch

- Simple data structure for estimating the number of occurrence of items
- Looks like a counting Bloom filter
- Counts provide an UPPER BOUND for number of occurrences
- Only accurate for counting the most frequent values
- Term "sketch" is used in streaming to refer to saving just a small amount of info as the data goes by

Multiple hash functions

- k hash tables with independent hash functions $h_{1}(x) \ldots h_{k}(x)$
- We can think of $k=5$
- Each table has b buckets, where $b \ll n$
- We can think of $b=1000$
- Int HT[k][b]
- $\operatorname{Inc}(\mathrm{x})$, add one to each counter for $\mathrm{x}, \mathrm{HT}[\mathrm{j}]\left[\mathrm{h}_{\mathrm{j}}(\mathrm{x})\right]++$
- Count $(x), \min \left(H T[1]\left[h_{1}(x)\right], H T[2]\left[h_{2}(x)\right], \ldots H T[k]\left[h_{k}(x)\right]\right)$
- Upperbound on the count (but can easily be wrong)

Example

	$h_{1}(x)$	$h_{2}(x)$	$h_{3}(x)$	$h_{4}(x)$	$h_{5}(x)$
A	9	2	10	2	5
B	1	7	4	7	3
C	3	10	7	10	9
D	7	3	10	7	3
E	1	10	7	4	2
F	6	9	8	4	1
G	10	6	9	5	2
H	7	4	7	6	1

1		1				2		3	
	3		2			1			1
			1			1			$3+2$
	3					$1+2$			1
		$1+2$		3				1	

Sequence: A, B, C, D, A, D, A

Example

	$h_{1}(x)$	$h_{2}(x)$	$h_{3}(x)$	$h_{4}(x)$	$h_{5}(x)$
$A(16)$	9	2	10	2	5
B (10)	1	7	4	7	3
C (6)	6	10	7	10	9
D (17)	7	3	10	7	3
E (2)	1	10	7	4	2
F (16)	6	9	8	4	1
G (6)	10	6	9	5	2
H (6)	7	4	7	6	1
I (4)	9	2	1	2	7
J (3)	4	9	3	9	8
K (5)	2	8	8	6	5

12	5		3		22	24		20	6
	22	17	6		6	10	5	19	8
4		3	10			14	21	6	33
	25		18	6	6	27		3	6
22	8	27		21		4	3	6	

A: 20, 22, 33, 25, 21
D: $24,17,33,27,27$
F: 22, 19, 21, 18, 22

Sequence: A, B, C, D, A, D, A, J, A, I, D, B, F, G, G, H, E, B, A, K, A, B, A, A, D, D, D, C, I, A, B, C, D, E, F, G, K, H, G, H, B, D, D, K, H, A, B, I, D, A, D, A, B, C, C, D, A, F, F, F, I, F, F, F, G, H, A, B, D, K, D, D, D, A, K, B, C, F, G, H, F, F, J, J, F, D, F, A, F, F, F

Heuristic Error Analysis

- f_{x} is the true frequency count for x
- Single row analysis
- If we're lucky, $\mathrm{HT}[\mathrm{h}(\mathrm{x})]$ will be the true count, f_{x}
- If we're unlucky, y collides with x, then f_{y} contributes to $H T[h(x)]$
- In general, $H T[h(x)]=f_{x}+\sum_{s} f_{y}$ where $s=\{y \neq x: h(x)=h(y)\}$
- With a good hash function h, x collides with an expected $1 / b$ elements
- Therefore, we expect

$$
H T[h(x)]=f_{x}+\frac{1}{b} \sum_{y \neq x} f_{y} \leq f_{x}+\frac{n}{b}
$$

Lemma

- Let X be a positive random variable with expectation $\mathrm{E}[\mathrm{X}]=\mathrm{C}$
- The probability that X is greater than $2 C$ is at most one half

Error analysis

- Applying the lemma

$$
\operatorname{Prob}\left[H T[h(x)]>f_{x}+\frac{2 n}{b}\right] \leq \frac{1}{2}
$$

- Now consider k hash tables

$$
\operatorname{Prob}\left[\min _{i=1}^{k} H T[i]\left[h_{i}(x)\right]>f_{x}+\frac{2 n}{b}\right]=\prod_{i=1}^{k} \operatorname{Prob}\left[H T[i]\left[h_{i}(x)\right]>f_{x}+\frac{2 n}{b}\right] \leq\left(\frac{1}{2}\right)^{k}
$$

- If we want error δ, we need $k \geq \log (1 / \delta)$
- For $\delta=.01$ this is $\mathrm{k}=7$
- For ε-Heavy Hitters, we want error at most ε n, we take $b=1 / \varepsilon$

Rigorous analysis (see 2.5 in the notes)

- What we've covered up: choosing random hash functions
- Universal family of hash functions
- Markov's Inequality

Universal Family of Hash Functions

- Really good practical hash functions exist
- Fast and good distribution of keys
- Cryptographic hash functions are difficult to invert and more work
- Choose a random hash function
- Set of hash functions $\mathrm{H}: \mathrm{U} \rightarrow$ [1..m]
- Universal property
- For all x, y in U, with $x \neq y$, if h is chosen at random from H

$$
\operatorname{Prob}[h(x)=h(y)] \leq \frac{1}{m}
$$

- This is a minimal property for good hash functions
- Practical university families exist, so mathematically sound algorithms could be implemented

Carter-Wegman hash functions

- Hashing from [0..m-1] to [0..m-1]
- Choose prime p, p>> m
- $\left.h_{a b}(x)=((a x+b) \bmod p) \bmod m\right)$ where $1 \leq a<p$ and $0 \leq b<p$
- If a and b are chosen at random, $x \neq y$, then $\operatorname{Prob}\left[h_{a b}(x)=h_{a b}(y)\right]=1 / m$

Markov's Inequality

- If X is a non-negative random variable and $c \geq 1$ is a constant

$$
\operatorname{Prob}[X>c \cdot E[X]] \leq \frac{1}{c}
$$

- Crude method from converting from expectation to probability

ε-Heavy Hitters

- Find elements which occur at least n / k times with error range εn
- Parameters k and ε :
- Every value that occurs at least n / k times in A is in the list
- Every value on the list occurs at least $n / k-\varepsilon n$ times in A.
- Choose $\varepsilon=1 / 2 \mathrm{k}$
- For CountMin, we take $b=1 / \varepsilon$ and with j hash functions, where $j=\log (1 / \delta)$
- Reasonable practical values are $\mathrm{k}=100$ and $\delta=.01$, so this is a table of size 1000 for an n as large as you want!

Tracking the heavy hitters

- Note that we don't even need to know what n is.
- We track the values of the potential heavy hitters as the algorithm runs
- The easiest way is to just keep the values on the ε-heavy hitters list in a heap as there are at most $2 k$ of these values (independent of n)

Big numbers

$2^{10} \cong 10^{3}$

- What is the biggest value of N we need to worry about as an input size
- What is an appropriate domain, [0..m-1] for a hash function

Answer: 2^{64}

- Big numbers:
- Number of US social security numbers 10^{9}
- Populations of India, China: 1.4 Billion
- World Population: 7.8 Billion
- Stars in Galaxy 10^{12}
- Galaxies in Universe 10^{12}
- $\log \log 2^{64}=\log 64=6$

More on hash functions

- Hashing from [1..m] to [1..t]
- Considerations
- Uniformity, "randomness"
- Sensitive to small changes
- Speed
- Cryptographic security
- Hashing from U to [1..m]
- Avoid losing information
- Avoid regular collisions
- Combine words with operations such as SHIFT and XOR
- You shouldn't have to invent or code your hash functions
- Multiplicative approaches to hash functions are common
- But have some risks on poor choices of multipliers
- Saving middle part of multiplication is common
- Bitwise operations such as XOR, <<, >>
- Common to have algorithms based on particular key numbers
- $a=11400714819323198485$ for Fibonacci hashing
- Power of two close to 2^{64}

Sample hash function: Fowler-Noll-Vo

```
algorithm fnv-1 is
    hash := FNV_offset_basis
```

 for each byte_of_data to be hashed do
 hash := hash × FNV_prime
 hash := hash XOR byte_of_data
 return hash
 - The FNV_offset_basis is the 64-bit FNV offset basis value: 14695981039346656037.
- The FNV_prime is the 64-bit FNV prime value: 1099511628211.
- 64-bit unsigned arithmetic, so multiplication is $\bmod 2^{64}$

Coming attractions ...

- Hyperloglog

