CSEP 521: Applied Algorithms Lecture 9 Algorithms for Streams

Richard Anderson
February 2, 2021

Announcements

- Homework 5 is out
- Its raining, there's homework...
- All students should be on the Ed discussion board now
- Apologies for this Snafu - the problem was with CSEM registrations

Algorithms

- Designing computational processes
- Abstract expression of instructions for a task built on a set of computational primitives
- A key part of this class is thinking about algorithms across different computational settings
- Some problems become interesting (and important) in novel settings

Models of Computation

- Ground rules for defining computation
- Expression of key operations and resources
- Link with mathematics
- Abstract away grim reality of real devices
- Capture setting and constraints

Standard Model

- RAM (Random Access Machine)
- Idealized computer
- Natural instructions
- Unit cost models
- Compute functions of inputs
- Develop runtime functions

Memory Based Models

- Real systems are based on a memory hierarchy, and optimization for storage may be a central concern
- External Storage models
- Consider costs for external access, as well as paged access
- Data Base Systems
- View computations as interacting with internal state through DBMS

Formal stream model

- Data items received one at a time, N is number of items received
- Computation performed on each data item
- Memory is limited to being much less than N
- It may be a constant b, or $\log \mathrm{N}$
- Think of b in thousands (or millions), N in billions (or gazillions)
- Low runtime per item and stay within bounds

Some trivial examples of Stream Algorithms

- Count the elements
- Find a specific element
- Count by property
- Average value
- Maximum
- Pick a random element
- Not trivial, so its homework

Element Distinctness

- Determine if there are any duplicate elements
- Yes/No question: Are all of the elements distinct
$. . ., 4,19,11,21,93,0,1,15,46,18,31,41,51,96,42,19,33$

Theorem:

Element distinctness requires $\Omega(\mathrm{N})$ space

- Make the assumption you are drawing elements from a large domain
- Assume elements are from 1 .. N^{2} for N elements in the stream
- Heuristic argument:
- You need to save all of the items, since the last one could match any one you have seen
- Rigorous argument:
- This is much more work, as you need to define the model of computation to prevent cheating in storage - you need a model that counts the bits of storage
- To make this work requires tools such as information theory (which is very cool!)

Majority Element

- Given a sequence of n elements, is there an element that occurs at least $\mathrm{n} / 2+1$ times.
- GME, MSFT, GME, GME, GME, AMZN, AMZN, GME, GME, GME, FB
- This is a standard exercise in Divide and Conquer algorithms
- Or if you are allowed to compare elements, you can sort, or compute the median and verify
- But there is a better way

Counter based algorithm*

Find a majority element in array A of length n
Counter $=0$;
Current $=$ null
for $\mathrm{j}=1$ to n
if Counter $=0$
Current $=\mathrm{A}[j]$
Counter $=$ Count
else if A $[j]$ Counter
Counter $=$ Counter +
else Counter $=$ Counter -1
return Current
Thate specifining algorithms as just code

Correctness Proof

- If X is a majority element, it will be found by the counter based algorithm
- Counter for X increases + Counter for non- X decreases is at least n/2 + 1

How about this one? Breakout groups
Impossibility results

- Determine if a stream algorithm can find an element that occurs more than $\mathrm{n} / 3$ times

Heavy Hitters Problem

- Find elements which occur at least n / k times
- ε-Heavy Hitters: Approximation algorithm for Heavy Hitters

Applications

- Most common items in a stream
- Detecting common searches
- Parameters k and ε :
- Every value that occurs at least n / k times in A is in the list
- Every value on the list occurs at least $n / k-\varepsilon n$ times in A.
- In other words
- At least n / k times. One the list
- Between $n / k-\varepsilon n$ and n / k times. Maybe on the list
- Fewer than $\mathrm{n} / \mathrm{k}-\varepsilon \mathrm{\varepsilon}$ times. Not on the list

Count Min Sketch

- Simple data structure for estimating the number of occurrence of items
- Looks like a counting Bloom filter
- Counts provide an UPPER BOUND for number of occurrences
- Only accurate for counting the most frequent values
- Term "sketch" is used in streaming to refer to saving just a small amount of info as the data goes by

Multiple hash functions (think Bloom filter)

- k hash tables with independent hash functions $h_{1}(x) \ldots h_{k}(x)$
- We can think of $\mathrm{k}=5$

Each table has b buckets, where b $\ll \mathrm{n}$

- We can think of $b=1000$
- Int HT[k][b]
- $\operatorname{Inc}(x)$, add one to each counter for $x, H T[j]\left[h_{j}(x)\right]++$
- Count(x), $\min \left(H T[1]\left[h_{1}(x)\right], H T[2]\left[h_{2}(x)\right], \ldots H T[k]\left[h_{k}(x)\right]\right)$
- Upperbound on the count (but can easily be wrong)

Count values in a hash table
for each X in the stream
Count[Hash[X]] = Count[Hash[X]] + 1

- First idea, store the counts in a cell indexed by the hash of a value
- What could go wrong? Do we worry about Hash[x] = Hash[y]

Setting expectations

- This is an approximation
- We are interested in estimating counts of most common items
- Counts for rare items will be garbage
- Epsilon approximation for Heavy Hitters

Example $h_{1}(x)$ $h_{2}(x)$ $h_{3}(x)$ $h_{4}(x)$ A 9 2 10 2 5 B 1 7 4 7 3 C 3 10 7 10 D 7 3 10 7 E 1 10 7 4 F 6 9 8 4 G 10 6 9 5 H 7 4 7 6 $>.1$

1		1				2		3	
	3		2			1			1
			1			1			$3+2$
	3					$1+2$			1
		$1+2$		3				1	

[^0]Example

	$h_{1}(x)$	$h_{2}(x)$	$h_{3}(x)$	$h_{4}(x)$	$h_{5}(x)$
$A(16)$	9	2	10	2	5
$B(10)$	1	7	4	7	3
$C(6)$	3	10	7	10	9
$D(17)$	7	3	10	7	3
$E(2)$	1	10	7	4	2
$F(16)$	6	9	8	4	1
$G(6)$	10	6	9	5	2
$H(6)$	7	4	7	6	1

12		6			26	24		16	
	16	17	6		6	10		16	8
			10			14	16	6	33
	16		18	6	6	27			6
24	8	27		16				6	

A short, incorrect proof is often more convincing than a longer correct one - J.D.Ulliman
Heuristic Error Analysis

- f_{x} is the true frequency count for x
- Single row analysis
- If we're lucky, $\mathrm{HT}[h(x)]$ will be the true count, f_{x}
- If we're unlucky, y collides with x, then f_{y} contributes to $\mathrm{HT}[h(x)]$
- In general, $\mathrm{HT}[\mathrm{h}(\mathrm{x})]=\mathrm{f}_{\mathrm{x}}+\sum_{\mathrm{s}_{\mathrm{f}}} \mathrm{f}_{\mathrm{y}}$ where $\mathrm{s}=\{\mathrm{y} \neq \mathrm{x}: \mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})\}$
- With a good hash function h, x collides with an expected $1 / b$ elements
- Therefore, we expect

$$
H T[h(x)]=f_{x}+\frac{1}{b} \sum_{y \neq x} f_{y} \leq f_{x}+\frac{n}{b}
$$

Error analysis

- Applying the lemma

$$
\text { Prob }\left[H T[h(x)]>f_{x}+\frac{2 n}{b}\right] \leq \frac{1}{2}
$$

- Now consider k hash tables

$$
\operatorname{Prob}\left[\min _{i=1}^{k} H T[i]\left[h_{i}(x)\right]>f_{x}+\frac{2 n}{b}\right]=\prod_{i=1}^{k} \operatorname{Prob}\left[H T[i]\left[h_{i}(x)\right]>f_{x}+\frac{2 n}{b}\right] \leq\left(\frac{1}{2}\right)^{k}
$$

- If we want error δ, we need $k \geq \log (1 / \delta)$
- For $\delta=.01$ this is $\mathrm{k}=7$
- For ε-Heavy Hitters, we want error at most εn, we take $b=1 / \varepsilon$

Universal Family of Hash Functions

- Really good practical hash functions exist
- Fast and good distribution of keys
- Cryptographic hash functions are difficult to invert and more work
- Choose a random hash function
- Set of hash functions $\mathrm{H}: \mathrm{U} \rightarrow$ [1..m]
- Universal property
- For all x, y in U, with $x \neq y$, if h is chosen at random from H

$$
\operatorname{Prob}[h(x)=h(y)] \leq \frac{1}{m}
$$

- This is a minimal property for good hash functions
- Practical university families exist, so mathematically sound algorithms could be implemented

Lemma

- Let X be a positive random variable with expectation $\mathrm{E}[\mathrm{X}]=\mathrm{C}$
- The probability that X is greater than $2 C$ is at most one half

Rigorous analysis (see 2.5 in the notes)

- What we've covered up: choosing random hash functions
- Universal family of hash functions
- Markov's Inequality

Markov's Inequality

- If X is a non-negative random variable and $\mathrm{c} \geq 1$ is a constant

$$
\operatorname{Prob}[X>c \cdot E[X]] \leq \frac{1}{c}
$$

- Crude method from converting from expectation to probability

ε-Heavy Hitters

- Find elements which occur at least n / k times with error range εn
- Parameters k and ε :
- Every value that occurs at least n / k times in A is in the list
- Every value on the list occurs at least $n / k-\varepsilon n$ times in A.
- Choose $\varepsilon=1 / 2 \mathrm{k}$
- For CountMin, we take $b=1 / \varepsilon$ and with j hash functions, where $j=\log (1 / \delta)$
- Reasonable practical values are $\mathrm{k}=100$ and $\delta=.01$, so this is a table of size 1000 for an n as large as you want!

Tracking the heavy hitters

- Note that we don't even need to know what n is.
- We track the values of the potential heavy hitters as the algorithm runs
- The easiest way is to just keep the values on the ε-heavy hitters list in a heap as there are at most 2 k of these values (independent of n)

Coming attractions . .

- Hyperloglog

[^0]: Sequence: A, B, C, D, A, D, A

