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CSEP 521: Applied Algorithms
Lecture 9 

Algorithms for Streams
Richard Anderson

February 2, 2021

Announcements

• Homework 5 is out
• Its raining,  there’s homework . . .

• All students should be on the Ed discussion board now
• Apologies for this Snafu – the problem was with CSEM registrations 

Algorithms

• Designing computational processes 

• Abstract expression of instructions for a task built on a set of 
computational primitives

• A key part of this class is thinking about algorithms across different 
computational settings

• Some problems become interesting (and important) in novel settings

Models of Computation

• Ground rules for defining computation

• Expression of key operations and resources

• Link with mathematics

• Abstract away grim reality of real devices

• Capture setting and constraints

Standard Model

• RAM (Random Access Machine)

• Idealized computer

• Natural instructions

• Unit cost models

• Compute functions of inputs

• Develop runtime functions

Memory Based Models

• Real systems are based on a memory hierarchy,  and optimization for 
storage may be a central concern

• External Storage models
• Consider costs for external access, as well as paged access

• Data Base Systems
• View computations as interacting with internal state through DBMS
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Stream Models

• Reacting to ongoing 
data sources

• Viewing data a single 
time

• Large quantities of 
data

• Limited local resources 

Formal stream model

• Data items received one at a time, N is number of items received

• Computation performed on each data item

• Memory is limited to being much less than N

• It may be a constant b, or log N

• Think of b in thousands (or millions),  N in billions (or gazillions)

• Low runtime per item and stay within bounds

Some trivial examples of Stream Algorithms

• Count the elements

• Find a specific element

• Count by property

• Average value

• Maximum

• Pick a random element
• Not trivial, so its homework

Element Distinctness

• Determine if there are any duplicate elements
• Yes/No question:  Are all of the elements distinct

…,4,19,11,21,93,0,1,15,46,18,31,41,51,96,42,19,33

Theorem: 
Element distinctness requires (N) space
• Make the assumption you are drawing elements from a large domain

• Assume elements are from 1..N2 for N elements in the stream

• Heuristic argument:  
• You need to save all of the items,  since the last one could match any one you have 

seen

• Rigorous argument:
• This is much more work, as you need to define the model of computation to prevent 

cheating in storage – you need a model that counts the bits of storage

• To make this work requires tools such as information theory (which is very cool!)

Majority Element

• Given a sequence of n elements,  is there an element that occurs at 
least n/2 + 1 times.

• GME, MSFT, GME, GME, GME, AMZN, AMZN, GME, GME, GME, FB

• This is a standard exercise in Divide and Conquer algorithms

• Or if you are allowed to compare elements,  you can sort,  or compute 
the median and verify

• But there is a better way
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Counter based algorithm*

Find a majority element in array A of length n

Counter = 0;

Current = null;

for j = 1 to n

if Counter == 0

Current = A[j]

Counter = Counter + 1

else if A[j] == Current

Counter = Counter + 1

else

Counter = Counter -1

return Current

*I hate specifying algorithms as just code

Correctness Proof

• If X is a majority element,  it will be found by the counter based 
algorithm

• Counter for X increases + Counter for non-X decreases is at least 
n/2 + 1

How about this one?  Breakout groups

• Determine if a stream algorithm can find an element that occurs 
more than n/3 times

Impossibility results

Heavy Hitters Problem

• Find elements which occur at least n/k times

• ε-Heavy Hitters: Approximation algorithm for Heavy Hitters

• Parameters k and ε:
• Every value that occurs at least n/k times in A is in the list
• Every value on the list occurs at least n/k – εn times in A.

• In other words
• At least n/k times.   One the  list
• Between n/k – εn and n/k times.  Maybe on the list
• Fewer than n/k – εn times.  Not on the list

Applications

• Most common items in a stream

• Detecting common searches

• Frequent stock trades

• TCP flows – identifying DOS attacks
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Count Min Sketch

• Simple data structure  for estimating the number of occurrence of 
items

• Looks like a counting Bloom filter

• Counts provide an UPPER BOUND for number of occurrences

• Only accurate for counting the most frequent values

• Term “sketch” is used in streaming to refer to saving just a small 
amount of info as the data goes by

Count values in a hash table

• First idea,  store the counts in a cell indexed by the hash of a value

• What could go wrong?  Do we worry about Hash[x] = Hash[y]

for each X in the stream

Count[Hash[X]] = Count[Hash[X]] + 1

Multiple hash functions (think Bloom filter)

• k hash tables with independent hash functions h1(x) . . . hk(x)
• We can think of k=5

• Each table has b buckets,  where b << n
• We can think of b = 1000
• Int HT[k][b]

• Inc(x),  add one to each counter for x,  HT[j][hj(x)]++

• Count(x),  min(HT[1][h1(x)], HT[2][h2(x)], . . . HT[k][hk(x)])

• Upperbound on the count (but can easily be wrong)

Setting expectations

• This is an approximation

• We are interested in estimating counts of most common items

• Counts for rare items will be garbage

• Epsilon approximation for Heavy Hitters

Example

1 1 2 3

3 2 1 1

1 1 3+2

3 1+2 1

1+2 3 1

h1(x) h2(x) h3(x) h4(x) h5(x)

A 9 2 10 2 5

B 1 7 4 7 3

C 3 10 7 10 9

D 7 3 10 7 3

E 1 10 7 4 2

F 6 9 8 4 1

G 10 6 9 5 2

H 7 4 7 6 1

Sequence:  A, B, C, D, A, D, A

Example

12 6 26 24 16

16 17 6 6 10 16 8

10 14 16 6 33

16 18 6 6 27 6

24 8 27 16 6

h1(x) h2(x) h3(x) h4(x) h5(x)

A (16) 9 2 10 2 5

B (10) 1 7 4 7 3

C (6) 3 10 7 10 9

D (17) 7 3 10 7 3

E (2) 1 10 7 4 2

F (16) 6 9 8 4 1

G (6) 10 6 9 5 2

H (6) 7 4 7 6 1

Sequence:  A, B, C, D, A, D, A, A, D, B, F, G, G, H, E, B, A, A, B, A, A, D, D, D, C, A, B, C, D, E, F, G, H, G, H, B, 
D, D, H, A, B, D, A, D, A, B, C, C, D, A, F, F, F, F, F, F, G, H, A, B, D, D, D, D, A, B, C, F, G, H, F, F, F, D, F, A, F, F, F
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Heuristic Error Analysis

• fx is the true frequency count for x

• Single row analysis

• If we’re lucky,  HT[h(x)] will be the true count, fx

• If we’re unlucky, y collides with x, then fy contributes to HT[h(x)]

• In general,  HT[h(x)] = fx + sfy where s = {yx : h(x) = h(y)}

• With a good hash function h, x collides with an expected 1/b elements

• Therefore, we expect

A short, incorrect proof is often more convincing than a longer correct one – J.D.Ullman

Lemma

• Let X be a positive random variable with expectation E[X] = C

• The probability that X is greater than 2C is at most one half

Error analysis

• Applying the lemma

• Now consider k hash tables

• If we want error δ, we need k ≥ log (1/δ)

• For δ = .01 this is k = 7

• For ε-Heavy Hitters, we want error at most εn, we take b = 1/ε

Rigorous analysis (see 2.5 in the notes)

• What we’ve covered up: choosing random hash functions

• Universal family of hash functions

• Markov’s Inequality

• Really good practical hash functions exist
• Fast and good distribution of keys
• Cryptographic hash functions are difficult to invert and more work

• Choose a random hash function
• Set of hash functions H: U[1..m]

• Universal property
• For all x, y in U, with x  y,  if h is chosen at random from H

• This is a minimal property for good hash functions
• Practical university families exist,  so mathematically sound algorithms could be 

implemented

Universal Family of Hash Functions Markov’s Inequality

• If X is a non-negative random variable and c ≥ 1 is a constant

• Crude method from converting from expectation to probability
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ε-Heavy Hitters

• Find elements which occur at least n/k times with error range εn

• Parameters k and ε:
• Every value that occurs at least n/k times in A is in the list
• Every value on the list occurs at least n/k – εn times in A.

• Choose ε = 1/2k

• For CountMin, we take b = 1/ε and with j hash functions, where             
j = log (1/δ)

• Reasonable practical values are k=100 and δ=.01,  so this is a table of 
size 1000 for an n as large as you want! 

Tracking the heavy hitters

• Note that we don’t even need to know what n is.

• We track the values of the potential heavy hitters as the algorithm 
runs

• The easiest way is to just keep the values on the ε-heavy hitters list in 
a heap as there are at most 2k of these values (independent of n)

Coming attractions . . .

• Hyperloglog


