CSEP 521: Applied Algorithms Lecture 9 Algorithms for Streams

Richard Anderson

February 2, 2021

Announcements

- Homework 5 is out
 - Its raining, there's homework . . .
- All students should be on the Ed discussion board now
 - Apologies for this Snafu the problem was with CSEM registrations

Algorithms

- Designing computational processes
- Abstract expression of instructions for a task built on a set of computational primitives
- A key part of this class is thinking about algorithms across different computational settings
- Some problems become interesting (and important) in novel settings

Models of Computation

- Ground rules for defining computation
- Expression of key operations and resources
- Link with mathematics
- Abstract away grim reality of real devices
- Capture setting and constraints

Standard Model

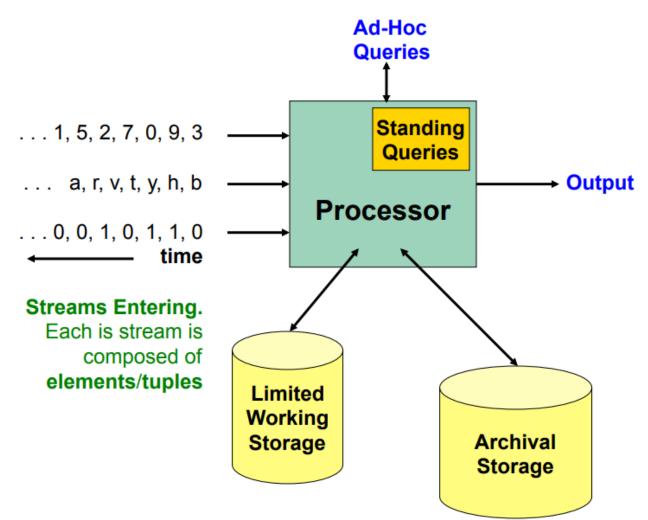
- RAM (Random Access Machine)
- Idealized computer
- Natural instructions
- Unit cost models
- Compute functions of inputs
- Develop runtime functions

Memory Based Models

- Real systems are based on a memory hierarchy, and optimization for storage may be a central concern
- External Storage models
 - Consider costs for external access, as well as paged access
- Data Base Systems
 - View computations as interacting with internal state through DBMS

Stream Models

- Reacting to ongoing data sources
- Viewing data a single time
- Large quantities of data
- Limited local resources



Formal stream model

- Data items received one at a time, N is number of items received
- Computation performed on each data item
- Memory is limited to being much less than N
- It may be a constant b, or log N
- Think of b in thousands (or millions), N in billions (or gazillions)
- Low runtime per item and stay within bounds

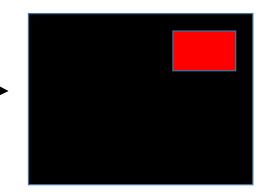
Some trivial examples of Stream Algorithms

- Count the elements
- Find a specific element
- Count by property
- Average value
- Maximum
- Pick a random element
 - Not trivial, so its homework

Element Distinctness

- Determine if there are any duplicate elements
 - Yes/No question: Are all of the elements distinct

...,4,19,11,21,93,0,1,15,46,18,31,41,51,96,42,19,33



Theorem:

Element distinctness requires $\Omega(N)$ space

- Make the assumption you are drawing elements from a large domain
 - Assume elements are from 1..N² for N elements in the stream
- Heuristic argument:
 - You need to save all of the items, since the last one could match any one you have seen
- Rigorous argument:
 - This is much more work, as you need to define the model of computation to prevent cheating in storage you need a model that counts the bits of storage
 - To make this work requires tools such as information theory (which is very cool!)

Majority Element

- Given a sequence of n elements, is there an element that occurs at least n/2 + 1 times.
- GME, MSFT, GME, GME, GME, AMZN, AMZN, GME, GME, GME, FB
- This is a standard exercise in Divide and Conquer algorithms
- Or if you are allowed to compare elements, you can sort, or compute the median and verify
- But there is a better way

Counter based algorithm*

Find a majority element in array A of length n

```
Counter = 0;
Current = null;
for j = 1 to n
    if Counter == 0
        Current = A[j]
        Counter = Counter + 1
    else if A[j] == Current
        Counter = Counter + 1
    else
        Counter = Counter -1
```

return Current

*I hate specifying algorithms as just code

Correctness Proof

- If X is a majority element, it will be found by the counter based algorithm
- Counter for X increases + Counter for non-X decreases is at least n/2 + 1

How about this one? Breakout groups

 Determine if a stream algorithm can find an element that occurs more than n/3 times

Impossibility results

Heavy Hitters Problem

- Find elements which occur at least n/k times
- ε-Heavy Hitters: Approximation algorithm for Heavy Hitters
- Parameters k and ε:
 - Every value that occurs at least n/k times in A is in the list
 - Every value on the list occurs at least $n/k \epsilon n$ times in A.
- In other words
 - At least n/k times. One the list
 - Between $n/k \epsilon n$ and n/k times. Maybe on the list
 - Fewer than $n/k \epsilon n$ times. Not on the list

Applications

- Most common items in a stream
- Detecting common searches
- Frequent stock trades
- TCP flows identifying DOS attacks

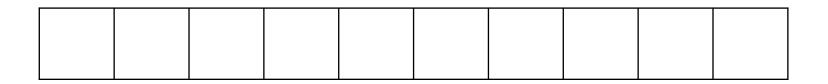
Count Min Sketch

- Simple data structure for estimating the number of occurrence of items
- Looks like a counting Bloom filter
- Counts provide an UPPER BOUND for number of occurrences
- Only accurate for counting the most frequent values
- Term "sketch" is used in streaming to refer to saving just a small amount of info as the data goes by

Count values in a hash table

for each X in the stream
 Count[Hash[X]] = Count[Hash[X]] + 1

- First idea, store the counts in a cell indexed by the hash of a value
- What could go wrong? Do we worry about Hash[x] = Hash[y]



Multiple hash functions (think Bloom filter)

- k hash tables with independent hash functions $h_1(x) \dots h_k(x)$
 - We can think of k=5
- Each table has b buckets, where b << n
 - We can think of b = 1000
 - Int HT[k][b]
- Inc(x), add one to each counter for x, HT[j][h_i(x)]++
- Count(x), min(HT[1][h₁(x)], HT[2][h₂(x)], . . . HT[k][h_k(x)])
- Upperbound on the count (but can easily be wrong)

Setting expectations

- This is an approximation
- We are interested in estimating counts of most common items
- Counts for rare items will be garbage
- Epsilon approximation for Heavy Hitters

Example

	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)	h ₅ (x)
А	9	2	10	2	5
В	1	7	4	7	3
С	3	10	7	10	9
D	7	3	10	7	3
E	1	10	7	4	2
F	6	9	8	4	1
G	10	6	9	5	2
Н	7	4	7	6	1

1		1			2	3	
	3		2		1		1
			1		1		<mark>3+2</mark>
	3				1+2		1
		1+2		3		1	

Sequence: A, B, C, D, A, D, A

Example

	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)	h ₅ (x)
A (16)	9	2	10	2	5
B (10)	1	7	4	7	3
C (6)	3	10	7	10	9
D (17)	7	3	10	7	3
E (2)	1	10	7	4	2
F (16)	6	9	8	4	1
G (6)	10	6	9	5	2
H (6)	7	4	7	6	1

12		6			26	24		16	
	16	17	6		6	10		16	8
			10			14	16	6	33
	16		18	6	6	27			6
24	8	27		16				6	

Heuristic Error Analysis

- f_x is the true frequency count for x
- Single row analysis
- If we're lucky, HT[h(x)] will be the true count, f_x
- If we're unlucky, y collides with x, then f_v contributes to HT[h(x)]
- In general, $HT[h(x)] = f_x + \sum_s f_y$ where $s = \{y \neq x : h(x) = h(y)\}$
- With a good hash function h, x collides with an expected 1/b elements
- Therefore, we expect

$$HT[h(x)] = f_x + \frac{1}{b} \sum_{y \neq x} f_y \le f_x + \frac{n}{b}$$

Lemma

- Let X be a positive random variable with expectation E[X] = C
- The probability that X is greater than 2C is at most one half

Error analysis

$$\operatorname{Prob}\left[HT[h(x)] > f_x + \frac{2n}{b}\right] \le \frac{1}{2}$$

• Now consider k hash tables

$$\operatorname{Prob}\left[\min_{i=1}^{k} HT[i][h_i(x)] > f_x + \frac{2n}{b}\right] = \prod_{i=1}^{k} \operatorname{Prob}\left[HT[i][h_i(x)] > f_x + \frac{2n}{b}\right] \le \left(\frac{1}{2}\right)^k$$

- If we want error δ , we need $k \ge \log (1/\delta)$
- For δ = .01 this is k = 7
- For ϵ -Heavy Hitters, we want error at most ϵn , we take $b = 1/\epsilon$

Rigorous analysis (see 2.5 in the notes)

- What we've covered up: choosing random hash functions
- Universal family of hash functions
- Markov's Inequality

Universal Family of Hash Functions

- Really good practical hash functions exist
 - Fast and good distribution of keys
 - Cryptographic hash functions are difficult to invert and more work
- Choose a random hash function
 - Set of hash functions H: $U \rightarrow [1..m]$
- Universal property
 - For all x, y in U, with $x \neq y$, if h is chosen at random from H

$$\operatorname{Prob}[h(x) = h(y)] \le \frac{1}{m}$$

- This is a minimal property for good hash functions
- Practical university families exist, so mathematically sound algorithms could be implemented

Markov's Inequality

• If X is a non-negative random variable and $c \ge 1$ is a constant

$$\operatorname{Prob}[X > c \cdot E[X]] \le \frac{1}{c}$$

• Crude method from converting from expectation to probability

ε-Heavy Hitters

- Find elements which occur at least n/k times with error range εn
- Parameters k and ε:
 - Every value that occurs at least n/k times in A is in the list
 - Every value on the list occurs at least $n/k \epsilon n$ times in A.
- Choose $\varepsilon = 1/2k$
- For CountMin, we take b = $1/\epsilon$ and with j hash functions, where j = log $(1/\delta)$
- Reasonable practical values are k=100 and δ =.01, so this is a table of size 1000 for an n as large as you want!

Tracking the heavy hitters

- Note that we don't even need to know what n is.
- We track the values of the potential heavy hitters as the algorithm runs
- The easiest way is to just keep the values on the ε-heavy hitters list in a heap as there are at most 2k of these values (independent of n)

Coming attractions . . .

• Hyperloglog