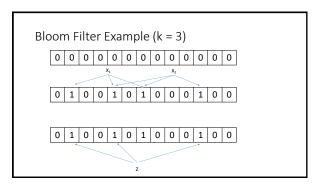
CSEP 521: Applied Algorithms Lecture 8 Cuckoo Hashing

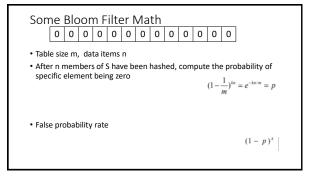
Richard Anderson January 28, 2021

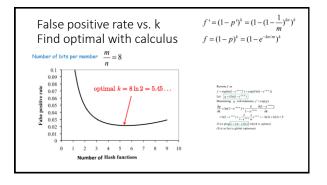
Announcements

Finishing up Bloom Filters

- Basic idea k-hash functions
- Bits are set at $h_1(x)$, $h_2(x)$, . . ., $h_k(x)$
- Lookup is done by reading $h_1(x),\,h_2(x),\,\ldots,\,h_k(x)$
- False positives are possible, false negatives are not
- Goal is to have a small number of bits per value
- Example: set of malicious URLs

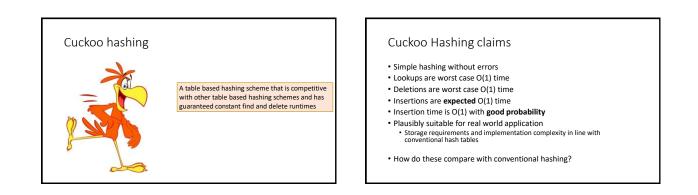


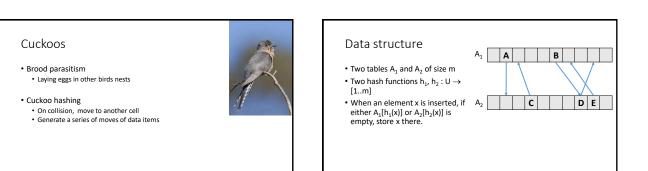




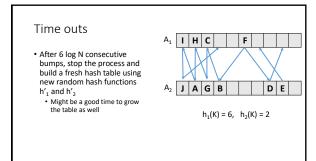
Bloom filter deletes

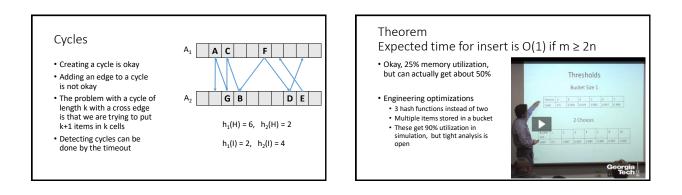
- Why do Bloom filters fail for deletes?
- Counting Bloom Filters
- Each cell is a counter (4 bits considered sufficient)
- Insert, add one to each target cell
- Delete, subtract one from each target cell
- Find, test if target cells non-zero
- On overflow, leave counter at maximum value

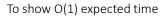




Bumping A₁ A В • When an element x is inserted, if either $A_1[h_1(x)]$ or $A_2[h_2(x)]$ is empty, store x there. · If both locations are occupied, DE A_2 С then place x in A₁[h₁(x)] and bump the current occupant. $h_1(F) = 6, h_2(F) = 4$ • When an element z is bumped from A₁[h₁(z)] store it in A₂[h₂(z)] from A₂[h₂(z)] store it in A₁[h₁(z)]



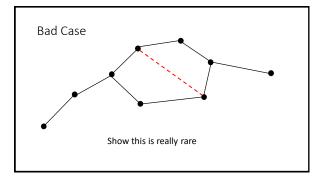




· We need to show

- Expected traversal time is O(1) when we don't time out
 Probability of timing out is O(1/n)
- This is done with the theory for random graphs and is really, really hairy
- In practice, failing items can be set aside in a ``stash" instead of rehashing

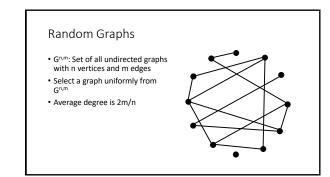
Experiments show that the number of elements stashed is tiny

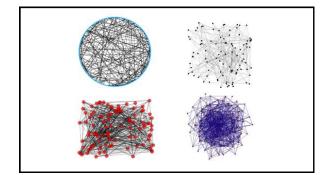


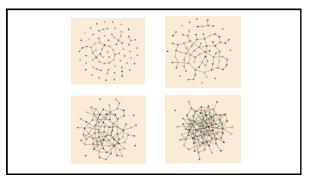
Undirected Graphs

- Vertices V, |V| = n, V = {a, b, c}} • Edges E, |E| = m, E ={{a,b}, {b,c}}
- m ≤ n(n-1) / 2
- Key concepts
 - Vertex degree
 Isolated vertex

 - Path
 - Connectivity
 Connected components







Edge Density

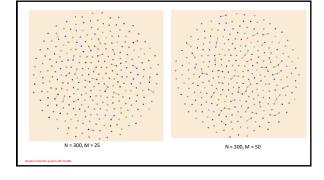
- Consider the number of edges as a function of the number of vertices
- Low density graphs, m = O(n), degree O(1)
- Medium density, $m = O(n \log n)$, degree $O(\log n)$
- High density, $m = O(n^{1+\epsilon})$, degree $O(n^{\epsilon})$

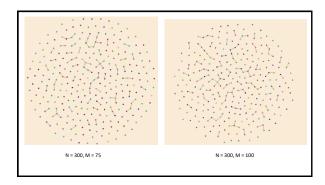
Properties of Random Graphs

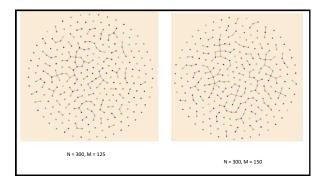
- Random graphs are surprisingly regular
- Edge degree is close to the average degree
- Dense graphs will be connected and have a Hamiltonian circuit (WHP)
- Low diameter

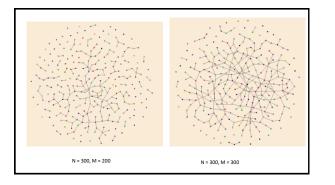
Evolution of Random Graphs

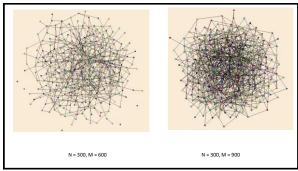
- Consider the process of building a random graph one edge at a time
- Look at how structures of the graph evolve
- Vertices start being connected, then start to form small components
 At a certain point, the components start to coalesce into a "giant" component with most of the vertices
- component with most of the vertices • Finally, all of the vertices become connected











Threshold properties

- · Point at which properties are very likely to hold
 - Giant component
 - All vertices have degree at least one
 - Graph connectedGraph has a Hamiltonian path
- Giant component forms at m = n/2
- Connectivity occurs at m = (1/2)nlog n

Results for Cuckoo Hashing Low edge density $m \le n/2$

- Let |S| = K, use two tables of size 2K each
- Construct a graph where the edges are $(h_1(x_i), h_2(x_i))$ for i = 1..K
- This is a random graph on 4K vertices with K edges

If $m \le cn$, for $c < \frac{1}{2}$ the components are trees of size $O(\log n)$

- Mathematical proof based on probabilities of groups of vertices being connected
- If graph density is sparse, the probability of having enough edges in a set of vertices of size α log n for it to be connected is small
- Cycles are unlikely to form
- Intuition is that in early stage of growth, most vertices are isolated, so random edges are unlikely to connect components

If components are small, then there is little chance of creating a bad cycle for hashing

- Bad structure is a cycle with an additional edge coming into the cycle
- Random pairs of vertices (from hash pairs) are unlikely to form this structure until at least ¼ cells are used

Cuckoo Hashing summary

- · Table based hashing using two hash functions
- Collision resolution done at insert time with cascades of swaps
 Timeout at O(log n) steps
- Expected O(1) time insert
- Finds are O(1) worst case
- Delete are O(1) worst case and easy to do
- · Relatively low hash table utilization
- · Practical improvements of utilization based on three has functions
- Theoretical analysis based on theory of random graphs