CSEP 521: Applied Algorithms
Lecture 7 Hashing
Richard Anderson
January 25, 2021

Announcements
• Homework 4 is available
 • Three problems
 • Program – evaluate “two choice” hashing
• Thursday, Cuckoo Hashing
 • Reading + Video link

Randomness so far
• Average case QuickSelect
• MinCut Analysis
• Binary Space Partition
• Average Case for Stable Marriage
• Primality Testing
 • A random world is more predictable than a deterministic one
 • Law of large numbers

Data structures
• Keeping track of stuff
• Supporting algorithms
 • Sometimes they matter and sometimes they don’t

Data structure trade offs
• Operation Time
• Space
• Accuracy
• Implementation complexity

Hashing
• Tracking information associated with keys
 • Set
 • Search tree
 • Arrays if the keys can be an index
• Key idea – map from key space S to table T, |S| = n, |T| = m
 • Hash function h, store data at location h(x)
 • Collision if h(x) = h(y) for x ≠ y
• In practice, O(1) access

Randomness so far
• Average case QuickSelect
• MinCut Analysis
• Binary Space Partition
• Average Case for Stable Marriage
• Primality Testing
 • A random world is more predictable than a deterministic one
 • Law of large numbers

Data structures
• Keeping track of stuff
• Supporting algorithms
 • Sometimes they matter and sometimes they don’t

Data structure trade offs
• Operation Time
• Space
• Accuracy
• Implementation complexity

Hashing
• Tracking information associated with keys
 • Set
 • Search tree
 • Arrays if the keys can be an index
• Key idea – map from key space S to table T, |S| = n, |T| = m
 • Hash function h, store data at location h(x)
 • Collision if h(x) = h(y) for x ≠ y
• In practice, O(1) access
Hash functions

- Start by assuming h is completely random
 - Universe U, $|U| = d$, table size m
 - Ω: set of all mappings from $1..d$ to $1..m$
- Lots of work in
 - Creating practical hash functions
 - Identifying weaker assumptions than “completely random”
- For some applications, “random” hash functions are important
- Useful class of hash functions, $H = \{ H_{p,a,b} \mid p$ prime, a, b in $[1..p-1] \}$
 - $H_{p,a,b}(x) = (a x + b) \mod p$

Collision resolution (review)

- Method 1 – Chaining (Closed addressing, open hashing)
- Method 2 – Table based (Open addressing, closed hashing)
- Load factor α, ratio of stored elements to table size
 - For Chaining, want $0.5 \leq \alpha \leq 1$
 - For Table based, need $\alpha \leq 0.75$ recommended
- Common approach is to increase table size (e.g., by a factor of 2) and rehash when load factor exceeds a bound

Balls and boxes

- N boxes, repeatedly assign balls to random boxes
- Coupon collecting – expected number of balls until every box is occupied
- How about if we assign K balls at random to N boxes
 - What is the expected number of balls in the first box?
 - What is the expected maximum for the number of balls assigned to any cell?
- Balls and boxes basis for the theory of hashing

N balls in N boxes

- What is the maximum number of balls in any box?
 - Definition w.h.p.
 - For any j, with appropriate choice of constants, probability of failure is $O(n^j)$
 - Maximum number of balls in a box is $O(\log n / \log \log n)$
 - $\log n / \log \log n$ analysis
 - Compute the probability that a given bin has more k items
 - Show that this is less than $1 / k!$
 - Choose $k = c \log n / \log \log n$, so that $1/k! < 1/n^2$
 - Probability that any bin has more than k items is less than $1/n$

The Math

$\Pr[\text{a bin gets more than } k \text{ elements}] \leq \binom{n}{k} \frac{1}{k^k} \leq \frac{1}{k!}$

By Stirling’s formula,

$A = \sqrt{n \log n \log \log n}$

If we choose $k = \Omega(\log n / \log \log n)$, we can let $\frac{1}{n} \leq \frac{1}{k}$. Then

$\Pr[\text{a bin gets } k \text{ balls}] \leq \frac{n}{k^k} \leq \frac{1}{n}$

So with probability larger than $1 - \frac{1}{n}$,

max load $\leq O\left(\frac{\log n}{\log \log n}\right)$

Power of hashing twice

- Let h_1 and h_2 by random hash functions
- When element x is inserted, it goes to the cell $h_2(x)$ or $h_1(x)$ with least number of elements elements
- Find must check cells $h_1(x)$ and $h_2(x)$
- The maximum number of elements assigned to any cell is $O(\log \log n)$ with high probability
Proof (Intuition)

• Ball has height k when it is placed in a bin with $k-1$ balls
• Expect $\leq \frac{n}{2}$ bins with 2 balls
• Expect $\leq \frac{n}{2^2}$ bins with 3 balls
• Expect $\leq \frac{n}{2^4}$ bins with 4 balls
• Expect $\leq \frac{n}{2^8}$ bins with 5 balls
• Expect $\leq \frac{n}{2^{16}}$ bins with 6 balls
• Expect $\leq \frac{n}{2^{32}}$ bins with 7 balls

Tracking keys without data

• If the key domain is $\{1..n\}$ a bit vector is ideal
• What if you hash into a bit vector?
• What type of errors occur

Bloom Filter

• Basic idea – k-hash functions
• Bits are set at $h_1(x), h_2(x), \ldots, h_k(x)$
• Lookup is done by reading $h_1(x), h_2(x), \ldots, h_k(x)$
• Can we get a false negative
• Can we get a false positive

Bloom Filter Example ($k = 3$)

```
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0
```

Some Bloom Filter Math

• Table size m, data items n
• After all members of S have been hashed probability of specific element being zero is
• False probability rate
• Express rate as a function of probability

\[
p = (1 - \frac{1}{m})^n = e^{-\frac{mn}{m}} = p
\]
\[
(1 - p)^k = (1 - p)^i
\]
\[
f_i = (1 - p)^i = (1 - (1 - \frac{1}{m})^n)^i
\]
\[
f = (1 - p)^i = (1 - e^{-\frac{mn}{m}})^i
\]
False positive rate vs. k
Find optimal with calculus

Bloom Filter Applications
- Dictionary to detect spelling mistakes
 - All good words let through, some mistakes will happen
- List of malicious URLs in browser
- List of keys needed for a database join
 - Akamai web caching, avoid caching data only requested once
 - List of requests put into a Bloom filter, store data on the second request

Bloom filter deletes
- Why do Bloom filters fail for deletes?
- Counting Bloom Filters
 - Each cell is a counter (4 bits considered sufficient)
 - Insert, add one to each target cell
 - Delete, delete one from each target cell
 - Find, test if target cells non-zero
- On overflow, leave counter at maximum value

Bloom Filter Deletes (k = 3)