
CSEP 521: Applied Algorithms
Lecture 7 Hashing

Richard Anderson

January 26, 2021

Announcements

• Homework 4 is available
• Three problems

• Program – evaluate “two choice” hashing

• Thursday, Cuckoo Hashing
• Reading + Video link

Randomness so far

• Average case QuickSelect

• MinCut Analysis

• Binary Space Partition

• Average Case for Stable Marriage

• Primality Testing

• A random world is more predictable than a deterministic one
• Law of large numbers

Data structures

• Keeping track of stuff

• Supporting algorithms

• Sometimes they matter and
sometimes they don’t

Heapsort(A, n)

H = new Heap()

for j = 1 to n-1

Heap.Insert(A[j])

for j = 1 to n-1

A[i] = Heap.DeleteMin()

Data structure trade offs

• Operation Time

• Space

• Accuracy

• Implementation complexity

Hashing

• Tracking information associated with keys
• Set

• Search tree

• Arrays if the keys can be an index

• Key idea – map from key space S to table T, |S| = n, |T| = m
• Hash function h, store data at location h(x)

• Collision if h(x) = h(y) for x  y

• In practice, O(1) access

Hans Peter Luhn

Hash functions

• Start by assuming h is completely random
• Universe U, |U| = d, table size m
•  : set of all mappings from 1..d to 1..m

• Lots of work in
• Creating practical hash functions
• Identifying weaker assumptions than “completely random”

• For some applications, “random” hash functions are important

• Useful class of hash functions, H = { Hp
a,b | p prime, a, b in [1 .. p-1]}

• Hp
a,b(x) = (a x + b) mod p

Collision resolution (review)

• Method 1 – Chaining (Closed addressing, open hashing)

• Method 2 – Table based (Open addressing, closed hashing)

• Load factor , ratio of stored elements to table size
• For Chaining, want 0.5 <=  <= 1

• For Table based, need  < 1,  <= 0.75 recommended

• Common approach is to increase table size (e.g., by a factor of 2) and
rehash when load factor exceeds a bound

Balls and boxes

• N boxes, repeatedly assign balls to random boxes

• Coupon collecting – expected number of balls until every box is
occupied

• How about if we assign K balls at random to N boxes
• How many cells are occupied?

• What is the expected number of balls in the first box?

• What is the expected maximum for the number of balls assigned to any cell?

• Balls and boxes basis for the theory of hashing

N balls in N boxes
What is the maximum number of balls in any box?

• Definition w.h.p.
• For any j, with appropriate choice of constants, probability of failure is O(n-j)

• Maximum number of balls in a box is O(log n / log log n)

• log n / log log n analysis
• Compute the probability that a given bin has more k items

• Show that this is less than 1 / k!

• Choose k = c log n / log log n, so that 1/k! < 1/n2

• Probability that any bin has more than k items is less than 1/n

The Math

Power of hashing twice
Load balancing
• Let h1 and h2 by random hash functions

• When element x is inserted, it goes to the cell h1(x) or h2(x) with least
number of elements elements

• Find must check cells h1(x) and h2(x)

• The maximum number of elements assigned to any cell is O(loglog n)
with high probability

Proof (Intuition)

• Ball has height k when it is placed in a bin with k-1 balls

• Expect <= n/2 bins with 2 balls

• Expect <= n/22 bins with 3 balls

• Expect <= n/24 bins with 4 balls

• Expect <= n/28 bins with 5 balls

• Expect <= n/216 bins with 6 balls

• Expect <= n/232 bins with 7 balls

Tracking keys without data

• If the key domain is [1..n] a bit vector is ideal

• What if you hash into a bit vector?

• What type of errors occur

Bloom Filter

• Basic idea – k-hash functions

• Bits are set at h1(x), h2(x), . . ., hk(x)

• Lookup is done by reading h1(x), h2(x), . . ., hk(x)

• Can we get a false negative

• Can we get a false positive

Bloom Filter

• Alternative data structures: List, Hash Table

• Critical reason for using Bloom Filter – limited storage
• Lots of data

• Devices with limited memory (e.g., network routers)

• Need for main memory versus going to disk

• Don’t need to remember the actual data (in the data structure)

• Measure of interest – number of bits per data element

• Bloom filters have been left out of computer science curriculum

Bloom Filter Example (k = 3)

0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 1 0 0 0 1 0 0

0 1 0 0 1 0 1 0 0 0 1 0 0

X1

Z

Y1

X2

Y2

Some Bloom Filter Math

• Table size m, data items n

• After all members of S have been hashed probability of specific
element being zero is

• False probability rate

• Express rate as a function of probability

False positive rate vs. k
Find optimal with calculus

Bloom Filter Applications

• Dictionary to detect speling mistakes
• All good words let through, some mistakes will happen

• List of malicious URLs in browser

• List of keys needed for a database join

• Akamai web caching, avoid caching data only requested once
• List of requests put into a Bloom filter, store data on the second request

Bloom filter deletes

• Why do Bloom filters fail for deletes?

• Counting Bloom Filters

• Each cell is a counter (4 bits considered sufficient)

• Insert, add one to each target cell

• Delete, delete one from each target cell

• Find, test if target cells non-zero

• On overflow, leave counter at maximum value

Bloom Filter Deletes (k = 3)

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

X1

Z

Y1

X2

Y2

Insert X1

Insert X2

Insert Y1

Delete Y2

Find Z

