CSEP 521: Applied Algorithms Lecture 7 Hashing

Richard Anderson

January 26, 2021

Announcements

- Homework 4 is available
- Three problems
- Program - evaluate "two choice" hashing
- Thursday, Cuckoo Hashing
- Reading + Video link

Randomness so far

- Average case QuickSelect
- MinCut Analysis
- Binary Space Partition
- Average Case for Stable Marriage
- Primality Testing
- A random world is more predictable than a deterministic one
- Law of large numbers

Data structures

- Keeping track of stuff
- Supporting algorithms

```
Heapsort( A, n)
    H = new Heap()
    for j = 1 to n-1
        Heap.Insert(A[j])
    for j = 1 to n-1
        A[i] = Heap.DeleteMin()
```

- Sometimes they matter and sometimes they don't

Data structure trade offs

- Operation Time
- Space
- Accuracy
- Implementation complexity

Hashing

- Tracking information associated with keys
- Set
- Search tree
- Arrays if the keys can be an index
- Key idea - map from key space S to table $T,|S|=n,|T|=m$
- Hash function h, store data at location $h(x)$
- Collision if $h(x)=h(y)$ for $x \neq y$
- In practice, O(1) access

Hash functions

- Start by assuming h is completely random
- Universe $U,|U|=d$, table size m
- Ω : set of all mappings from 1..d to 1..m
- Lots of work in
- Creating practical hash functions
- Identifying weaker assumptions than "completely random"
- For some applications, "random" hash functions are important
- Useful class of hash functions, $H=\left\{H^{p}{ }_{a, b} \mid p\right.$ prime, a, b in [1 .. $\left.\left.p-1\right]\right\}$
- $H^{p}{ }_{a, b}(x)=(a x+b) \bmod p$

Collision resolution (review)

- Method 1 - Chaining (Closed addressing, open hashing)
- Method 2 - Table based (Open addressing, closed hashing)
- Load factor α, ratio of stored elements to table size
- For Chaining, want $0.5<=\alpha<=1$
- For Table based, need $\alpha<1, \alpha<=0.75$ recommended
- Common approach is to increase table size (e.g., by a factor of 2) and rehash when load factor exceeds a bound

Balls and boxes

- N boxes, repeatedly assign balls to random boxes
- Coupon collecting - expected number of balls until every box is occupied
- How about if we assign K balls at random to N boxes
- How many cells are occupied?
- What is the expected number of balls in the first box?
- What is the expected maximum for the number of balls assigned to any cell?
- Balls and boxes basis for the theory of hashing

N balls in N boxes
 What is the maximum number of balls in any box?

- Definition w.h.p.
- For any j, with appropriate choice of constants, probability of failure is $\mathrm{O}\left(\mathrm{n}^{-j}\right)$
- Maximum number of balls in a box is $O(\log n / \log \log n)$
- $\log \mathrm{n} / \log \log \mathrm{n}$ analysis
- Compute the probability that a given bin has more k items
- Show that this is less than $1 / \mathrm{k}$!
- Choose $k=c \log n / \log \log n$, so that $1 / k!<1 / n^{2}$
- Probability that any bin has more than k items is less than $1 / n$

The Math

$$
\operatorname{Pr}\left[\operatorname{bin}_{i} \text { gets more than } k \text { elements }\right] \leq\binom{ n}{k} \cdot \frac{1}{n^{k}} \leq \frac{1}{k!}
$$

By Stirling's formula,

$$
k!\sim \sqrt{2 n k}\left(\frac{k}{e}\right)^{k}
$$

If we choose $k=O\left(\frac{\log n}{\log \log n}\right)$, we can let $\frac{1}{k!} \leq \frac{1}{n^{2}}$. Then

$$
\operatorname{Pr}[\exists \text { a bin } \geq k \text { balls }] \leq n \cdot \frac{1}{n^{2}}=\frac{1}{n}
$$

So with probability larger than $1-\frac{1}{n}$,

$$
\max \operatorname{load} \leq O\left(\frac{\log n}{\log \log n}\right)
$$

Power of hashing twice Load balancing

- Let h_{1} and h_{2} by random hash functions
- When element x is inserted, it goes to the cell $h_{1}(x)$ or $h_{2}(x)$ with least number of elements elements
- Find must check cells $h_{1}(x)$ and $h_{2}(x)$
- The maximum number of elements assigned to any cell is $O(\log \log n)$ with high probability

Proof (Intuition)

- Ball has height k when it is placed in a bin with $k-1$ balls
- Expect $<=\mathrm{n} / 2$ bins with 2 balls
- Expect $<=n / 2^{2}$ bins with 3 balls
- Expect $<=n / 2^{4}$ bins with 4 balls
- Expect $<=n / 2^{8}$ bins with 5 balls
- Expect $<=n / 2^{16}$ bins with 6 balls
- Expect $<=n / 2^{32}$ bins with 7 balls

Tracking keys without data

- If the key domain is [1..n] a bit vector is ideal
- What if you hash into a bit vector?
- What type of errors occur

Bloom Filter

- Basic idea - k-hash functions
- Bits are set at $h_{1}(x), h_{2}(x), \ldots, h_{k}(x)$
- Lookup is done by reading $h_{1}(x), h_{2}(x), \ldots, h_{k}(x)$
- Can we get a false negative
- Can we get a false positive

Bloom Filter

- Alternative data structures: List, Hash Table
- Critical reason for using Bloom Filter - limited storage
- Lots of data
- Devices with limited memory (e.g., network routers)
- Need for main memory versus going to disk
- Don't need to remember the actual data (in the data structure)
- Measure of interest - number of bits per data element
- Bloom filters have been left out of computer science curriculum

Bloom Filter Example ($k=3$)

Some Bloom Filter Math

- Table size m, data items n
- After all members of S have been hashed probability of specific element being zero is
- False probability rate

$$
p^{\prime}=\left(1-\frac{1}{m}\right)^{k n} \simeq e^{-k n / m}=p
$$

- Express rate as a function of probability

$$
\begin{aligned}
& \left(1-p^{\prime}\right)^{k} \simeq(1-p)^{k} \\
& f^{\prime}=\left(1-p^{\prime}\right)^{k}=\left(1-\left(1-\frac{1}{m}\right)^{k n}\right)^{k} \\
& f=(1-p)^{k}=\left(1-e^{-k n / m}\right)^{k}
\end{aligned}
$$

False positive rate vs. k Find optimal with calculus

Number of bits per member $\frac{m}{n}=8$

Rewrite f as
$f=\exp \left(\ln \left(1-e^{-k n / m}\right)^{k}\right)=\exp \left(k \ln \left(1-e^{-k n / m}\right)\right)$
Let $g=k \ln \left(1-e^{-k n / m}\right)$
Minimizing g will minimize $f=\exp (g)$
$\frac{\partial g}{\partial k}=\ln \left(1-e^{-k n / m}\right)+\frac{k}{1-e^{-k n / m}} \frac{\partial\left(1-e^{-k n / m}\right)}{\partial k}$
$=\ln \left(1-e^{-k n / m}\right)+\frac{k}{1-e^{-k n / m}} \frac{n}{m} e^{-k n / m}=-\ln (2)+\ln (2)=0$
if we plug $k=(m / n) \ln 2$ which is optimal (It is in fact a global optimum)

Bloom Filter Applications

- Dictionary to detect speling mistakes
- All good words let through, some mistakes will happen
- List of malicious URLs in browser
- List of keys needed for a database join
- Akamai web caching, avoid caching data only requested once
- List of requests put into a Bloom filter, store data on the second request

Bloom filter deletes

- Why do Bloom filters fail for deletes?
- Counting Bloom Filters
- Each cell is a counter (4 bits considered sufficient)
- Insert, add one to each target cell
- Delete, delete one from each target cell
- Find, test if target cells non-zero
- On overflow, leave counter at maximum value

Bloom Filter Deletes ($\mathrm{k}=3$)

