

Primality Testing

- Miller-Rabin test demonstrated importance of randomized algorithm
- Break through result in 1980
- Depends on number theory (maybe a senior ugrad class)
- But much of the algorithm can be appreciated without the theory
- The key concept is that of a witness
- If something is true, a witness always says TRUE
- If something is false, a witness says TRUE with probability less than $1 / 2$

Why prime testing is important: cryptography

Complexity of number problems

- Run time based on size of input

RSA public key encryption

- Relies on factoring "being hard", $\mathrm{N}=\mathrm{pq}$ where p and q are prime
- Recommendation is that N is 2048 bits with p and q roughly 1024 bits
- 1024 bits is roughly 300 digits
- Need a way to generate "random primes"
- Guess and check

Announcements

- Today is the $21^{\text {st }}$ day of the $21^{\text {st }}$ year of the $21^{\text {st }}$ century

Primality testing

Is the number:
38,448,590,786,041,766,459,732,220,363,801,744,241,896,763,259,493,887,920,989,231,800,007,262,253,532,084,767,190, $284,597,690,724,762,898,279,841,570,128,623,506,757,165,008,658,334,072,162,989,430,299,242,002,399,263,948,157,60$
$7,441,618,354,889,045,484,455,604,450,713,181,265,743,757,650,808,578,235,094,058,535,442,090,523,274,067,570,229,4$,441,618,354,889,045,484,455,604,450,713,181,265,743,757,650,808,5
$06,671,451,796,017,542,179,880,527,768,546,296,447,905,493,082,191$

- A number p is prime if its only proper divisors are 1 and p, and is composite otherwise
- Small primes $\{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47, \ldots\}$
- Simple primality testing algorithms
- Trial division
- Sieve of Eratosthenes
- Input N has size $\log _{2} \mathrm{~N}$
- Polynomial time corresponds to polynomial in the size of the number
- Runtime polynomial in N is exponential in the number of bits

Bignum computation

- Arithmetic computation on large numbers - hundreds or thousands or millions of digits
- Run time expressed as a function of the number of digits
- Addition of two n -bit numbers: $\mathrm{O}(\mathrm{n})$
- Multiplication of two n -bit numbers: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ or $\mathrm{O}\left(\mathrm{n}^{3 / 2}\right)$ or $O(n \log n \log \log n)$
- Bignum arithmetic implemented by storing numbers in an array of ints
- 1024 bit number would require an array of 32 ints

Exponentiation: Compute A^{N}

- Do the computation mod M
- $129038105814095380935^{8430981423091243809}$ MOD 10000000000000000000000
- Compute by repeated squaring
- A raised to 2^{K} can be computed in K multiplications

Greatest Common Divisor

- $\operatorname{GCD}(\mathrm{A}, \mathrm{B})=\mathrm{D}$, where D is the largest number that divides both A and B
- Runs in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time for n bit numbers

	A: 33707, B: 15207
	A: 15207, B: 3293
function $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$	A: 3293, B: 2035
while $\mathrm{b} \neq 0$	A: 2035, B: 1258
$\mathrm{t}:=\mathrm{b}$	A: $12578, \mathrm{~B}: 777$
$\mathrm{b}:=\mathrm{a} \bmod \mathrm{b}$	A: 481, B: 296
a := t	A: $296, \mathrm{~B}: 185$
return a	$\text { A: } 185, \mathrm{~B}: 111$
	A: $74, \mathrm{~B}: 37$
	A: 37, B: 0

Prime testing - Idea: Modular arithmetic

- Let P be prime
- Consider the set of integers $\{1,2,3, \ldots, P-1\} \quad 1 \begin{array}{lllllll} & 2 & 3 & 4 & 5 & 6\end{array}$ $\begin{array}{llllllll}\text { with the operation }{ }^{*} \text {, where multiplication is } & 2 & 4 & 6 & 1 & 3 & 5\end{array}$ done $\bmod P$

Can the structure of modular multiplication be used to show P is prime?

- Set with multiplication mod P referred to as $\begin{array}{llllll}4 & 1 & 5 & 2 & 6 & 3\end{array}$ $\begin{array}{llllll}5 & 3 & 1 & 6 & 4 & 2\end{array}$ Z^{*} p

Modular multiplication

1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 1 3 5 7 9 11 3 6 9 12 2 5 8 11 1 4 7 10 4 8 12 3 7 11 2 6 10 1 5 9 5 10 2 7 12 4 9 1 6 11 3 8 6 12 5 11 4 10 3 9 2 8 1 7 7 1 8 2 9 3 10 4 11 5 12 6 8 3 11 6 1 9 4 12 7 2 10 5 9 5 1 10 6 2 11 7 3 12 8 4 10 7 4 1 11 8 5 2 12 9 6 3 11 9 7 5 3 1 12 10 8 6 4 2 12 11 10 9 8 7 6 5 4 3 2 1	1 2 3 4 5 6 7 8 9 10 11 12 13 14 2 4 6 8 10 12 14 1 3 5 7 9 11 13 3 6 9 12 0 3 6 9 12 0 3 6 9 12 4 8 12 1 5 9 13 2 6 10 14 3 7 11 5 10 0 5 10 0 5 10 0 5 10 0 5 10 6 12 3 9 0 6 12 3 9 0 6 12 3 9 7 14 6 13 5 12 4 11 3 10 2 9 1 8 8 1 9 2 10 3 11 4 12 5 13 6 14 7 9 3 12 6 0 9 3 12 6 0 9 3 12 6 10 5 0 10 5 0 10 5 0 10 5 0 10 5 11 7 3 14 10 6 2 13 9 5 1 12 8 4 12 9 6 3 0 12 9 6 3 0 12 9 6 3 13 11 9 7 5 3 1 14 12 10 8 6 4 2 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Zero divisors for integers mod N

- X is a zero divisor if $A X=0 \bmod N$ for some $A!=0$
- Fact: X is a zero divisor if and only if $\operatorname{GCD}(\mathrm{X}, \mathrm{N})>1$
- $Z^{*}{ }_{N}=\{y$ in [1.. N-1] | GCD $(y, N)=1\}$
- $\left|Z^{*}{ }_{N}\right|=\Phi(N)$

1	2	4	7	8	11	13	14
2	4	8	14	1	7	11	13
4	8	1	13	2	14	7	11
7	14	13	4	11	2	1	8
8	1	2	11	4	13	14	7
11	7	14	2	13	1	8	4
13	11	7	1	14	8	4	2
14	13	11	8	7	4	2	1

Idea (that doesn't quite work)

- Theorem: if P is prime, $\mathrm{A}^{\mathrm{P}-1}=1(\bmod \mathrm{P})$
- Pick a bunch of numbers at random from [1 .. P-1]
- Compute $\mathrm{X}^{\mathrm{P}-1}$ mod P for each one
- If all results are 1 , then say Prime
- If at least one of them is not 1 , then say Composite

Carmichael Numbers

What about $561=3 * 11 * 17$

- $2^{560}=1 \bmod 561$
- $4^{560}=1 \bmod 561$
- $5^{560}=1 \bmod 561$
- $7^{560}=1 \bmod 561$
- $8^{560}=1 \bmod 561$
- $10^{560}=1 \bmod 561$
- Carmichael numbers are rare (but there are an infinite number)
- Either all numbers in $Z^{*}{ }_{N}$ satisfy $X^{N-1}=1 \bmod N$ or at most half the numbers in $Z^{*}{ }_{N}$ satisfy $\mathrm{X}^{\mathrm{N}-1}=1 \bmod \mathrm{~N}$
- $14^{560}=1 \bmod 561$
-.....

Witnesses and Certificates

- Certificate C that can be used to prove a property
- To show N is composite, find a number A such that $1<G C D(A, N)<N$
- 178 is a Certificate that 11481 is composite
- Is there a certificate for primality?
- Prime Witness
- A property that always holds for primes
- A property that only sometimes holds for composites

Euler Test

- $\mathrm{N}-1 \bmod \mathrm{~N}=-1 \bmod \mathrm{~N}$, so we can think of $\mathrm{N}-1$ as -1 in $\mathrm{Z}^{*}{ }_{\mathrm{N}}$
- For P prime, $\mathrm{a}^{(\mathrm{p}-1) / 2}=1$ or $\mathrm{a}^{(\mathrm{p}-1) / 2}=-1$
- Half of the values of a have $a^{(p-1) / 2}=1$ and half have $a^{(p-1) / 2}=-1$
- But there are composite numbers that fool the Euler Test - $1729=7$ * 13 * 19
- $2^{864}=1 \bmod 1729,3^{864}=1 \bmod 1729,4^{864}=1 \bmod 1729, \ldots$

Lemma 14.32 (Motwani-Raghavan)

- Let N an odd composite that is not a power of a prime and suppose that for some a in $Z^{*}{ }_{N}, a^{(N-1) / 2}=-1 \bmod N$
- Let S be the set of numbers a in $Z^{*}{ }_{N}$ where $a^{(N-1) / 2}=-1 \bmod N$ or $a^{(N-1) / 2}=1 \bmod N$
- Then $|S|<=1 / 2\left|Z^{*}{ }_{N}\right|$
- Or in English: if the Euler Test passes with a -1, then at most half the values fool the test

Prime Testing Algorithm

1. If N is perfect power return Composite
. Choose a bunch of random values $b_{1}, b_{2}, \ldots, b_{t}$ from [1..n-1]
2. If $\mathrm{GCD}\left(\mathrm{b}_{\mathrm{j}}, \mathrm{N}\right)$ return Composite
3. $r_{j}=b_{j}^{(N-1) / 2}$
4. If $r_{j}!=1$ and $r_{j}!=-1$ return Composite
5. If $r_{j}=1$ for all j return Composite
6. Return prime

What could go wrong

- Composite number could fail line 5 and fail line 6 and be called prime
- Prime could be reported as composite on line 6
- Double sided error with failure probability $2^{-\mathrm{t}}$

Miller-Rabin test

- Determine if n is prime
- Given an integer a, $1<a<n$,
- Miller(n, a) returns either "maybe prime" or "definitely composite"
- For n prime, $\operatorname{Miller}(\mathrm{n}, \mathrm{a})$ always says "maybe prime"
- For n composite, Miller($n, a)$ says "maybe prime" with probability at most $1 / 4$ for a random a
- By running the Miller test repeatedly, we can make it arbitrary high probability

Fermat Test

- Fermat's little theorem
- For prime $n, a^{(n-1)}=1(\bmod n)$ for all a
- For most composite numbers, this fails most of the time
- Unfortunately, there are set of composite numbers (Carmichael numbers) that satisfy this
- $\{561,1105,1729,2465,2821,6601,8911,10585,15841,29341,41041$, 46657, 52633, 62745, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409, 314821, 334153, ...\}

Miller-Rabin test

- For a prime number n , the only square roots of 1 modulo n , are 1 and -1
- For $n=2^{s} d+1, a^{d}=1(\bmod n)$ or $a^{\left(2^{\wedge} r\right) d}=-1(\bmod n)$ for some $0<=r<s$
- For a composite number at most $1 / 4$ of values a satisfy these conditions

Pseudo-code

Input \#1: $n>3$, an odd integer to be tested for primality
Input \#2: k, the number of rounds of testing to perform
Output: "composite" if n is found to be composite, "probably prime" otherwise
write n as $2 \cdot \cdot d+1$ with d odd (by factoring out powers of 2 from $n-1$)
WitnessLoop: repeat k times:
pick a random integer a in the range $[2, n-2]$
$x \leftarrow a^{d} \bmod n$
continue WitnessLoop
repeat $r-1$ times:
$x \leftarrow x^{2}$ mod n
$x=n$
$x \leftarrow x^{2} \bmod n$
if $x=n-1$ then
$x=n-1$ then
continue WitnessLoo
return "composite"
return "probably prime"

Other facts on Prime Testing

- Miller-Rabin test is deterministic if Extended Riemann Hypothesis is true
- 2002 a deterministic polynomial time test based on Cyclotomic Polynomials was discovered
- Agrawal-Kayal-Saxena, IIT Kanpur
- Not practical (termed galactic algorithm - see Wikipedia)
- Factoring is thought to be harder then primality testing
- In practice, numbers of about 100 decimal digits are factorable in a few hours on a PC
- 250 decimal digit (829 bit) RSA keys have been factored (2700 CPU Years)
- Recommendation for RSA is 2048 bit keys
- RSA key is a number $n=p q$, where p and q are prime
- How do you generate random primes of 300 digits?
- Generate random number of 300 digits and test if they are prime - Of course, there are simple tricks to avoid small divisors
- Prime number theorem: Probability of a random number less than N is prime is about $1 / \log \mathrm{N}$ (Natural logarithm)
- For 300 digits, this is about 1 in 690

