CSEP 521: Applied Algorithms Lecture 6 Randomized Primality Testing

Richard Anderson January 21, 2021

Announcements

Today is the 21st day of the 21st year of the 21st century

Primality Testing

- · Miller-Rabin test demonstrated importance of randomized algorithm Break through result in 1980
- Depends on number theory (maybe a senior ugrad class) But much of the algorithm can be appreciated without the theory
- The key concept is that of a witness
 - If something is true, a witness always says TRUE
 - If something is false, a witness says TRUE with probability less than 1/2

Primality testing

Is the number: 38, 448, 590, 756, 041, 766, 459, 732, 220, 363, 801, 744, 241, 896, 763, 759, 493, 887, 920, 989, 231, 800, 007, 262, 253, 552, 084, 767, 190, 248, 4597, 500, 747, 623, 982, 794, 941, 570, 1128, 623, 655, 757, 165, 086, 658, 324, 607, 1162, 286, 400, 299, 242, 002, 392, 639, 441, 574, 600, 7441, 618, 354, 889, 045, 404, 455, 604, 450, 713, 1181, 265, 743, 757, 650, 808, 578, 235, 094, 058, 535, 442, 090, 523, 274, 067, 570, 229, 4 06, 671, 451, 796, 017, 542, 179, 880, 527, 768, 546, 236, 447, 905, 493, 082, 191 prime?

- A number p is prime if its only proper divisors are 1 and p, and is composite otherwise
- Small primes {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, . . .}
- Simple primality testing algorithms
 - Trial division Sieve of Eratosthenes

Why prime testing is important: cryptography

RSA public key encryption

- Relies on factoring "being hard", N = pq where p and q are prime
- Recommendation is that N is 2048 bits with p and q roughly 1024 bits
- · 1024 bits is roughly 300 digits
- Need a way to generate "random primes"

· Guess and check

Complexity of number problems

- Run time based on size of input
- Input N has size Log₂ N
- Polynomial time corresponds to polynomial in the size of the number
- Runtime polynomial in N is exponential in the number of bits

Bignum computation

- Arithmetic computation on large numbers hundreds or thousands or millions of digits
- Run time expressed as a function of the number of digits
- Addition of two n-bit numbers: O(n)
- Multiplication of two n-bit numbers: $O(n^2)$ or $O(n^{3/2})$ or $O(n \mbox{ log } n)$
- Bignum arithmetic implemented by storing numbers in an array of ints
- 1024 bit number would require an array of 32 ints

Exponentiation: Compute A^N

- Do the computation mod M

 129038105814095380935⁸⁴³⁰⁹⁸¹⁴²³⁰⁹¹²⁴³⁸⁰⁹ MOD 100000000000000000000000
- Compute by repeated squaring
- A raised to $2^{\kappa}\, \text{can}$ be computed in K multiplications

Greatest Common Divisor

• GCD(A, B) = D, where D is the largest number that divides both A and B • Runs in $O(n^2)$ time for n bit numbers

function gcd(a, b) while $b \neq 0$ t := b $b := a \mod b$ a := treturn a

A: 33707, B: 15207 A: 15207, B: 3293 A: 3293, B: 2035 A: 2035, B: 1258 A: 1258, B: 777 A: 777, B: 481 A: 481, B: 296 A: 286, B: 185 A: 185, B: 111 A: 111, B: 74 A: 74, B: 37 A: 37, B: 0

Prime testing – Idea: Modular arithmetic

- Let P be prime
- Consider the set of integers {1, 2, 3, ..., P-1} with the operation *, where multiplication is done mod P
 3
 6
- 2 5 4 1 • Can the structure of modular multiplication 2 4 1 5 6 3 be used to show P is prime? 5 3 1 6 4 2 · Set with multiplication mod P referred to as 6 5 4 3 2 1 Z*P

3 4 5 6

6 1

3 5

1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	4	6	8	10	12	1	3	5	7	9	11	2	4	6	8	10	12	14	1	3	5	7	9	11	13
3	6	9	12	2	5	8	11	1	4	7	10	3	6	9	12	0	3	6	9	12	0	3	6	9	12
4	8	12	3	7	11	2	6	10	1	5	9	4	8	12	1	5	9	13	2	6	10	14	3	7	11
5	10	2	7	12	4	9	1	6	11	3	8	5	10	0	5	10	0	5	10	0	5	10	0	5	10
6	12	5	11	4	10	3	9	2	8	1	7	6	12	3	9	0	6	12	3	9	0	6	12	3	9
7	1	8	2	9	3	10	4	11	5	12	6	7	14	6	13	5	12	4	11	3	10	2	9	1	8
8	3	11	6	1	9	4	12	7	2	10	5	8	1	9	2	10	3	11	4	12	5	13	6	14	7
9	5	1	10	- 6	2	11	7	3	12	8	4	9	3	12	6	0	9	3	12	6	ō	9	3	12	6
10		1	1	11		10	10	12	9	2	3	10	5	0	10	5	ő	10	5	ő	10	5	0	10	5
11	11	10	5	3	- 1	12	10		2	1	2	11	7	å	14	10	6	2	13	ő	5	1	12	8	4
12	11	10	,			0	5	-	5	~	-	12	ġ	6	3	0	12	9	6	3	0	12	9	6	3
												13	11	ă	7	5		1	14	12	10	8	6		2
												14	13	12	11	10	ā	8	7	6	5	4	ã	2	1

		Pc	DV Cor	V6 np	ers ute	5 (of	[:] е	le A³	m	1e	nt ₄₽-	1 1				P = 7, 11, 13													
1 2 3 4 5 6	1 : 2 : 4 : 1	1 6 1 6	1 2 4 2 1	1 4 5 2 3 6	1 1 1 1 1		1 2 3 4 5 6 7 8 9 10	1 9 5 3 5 9 4 1	1 8 9 4 7 2 6 3 10	1 5 4 3 9 3 4 5 1	1 1 1 10 10 10 10 10	1 9 3 4 5 5 4 3 9 1	1 9 5 3 6 2 4 10	1 3 5 9 4 9 5 3 1	1 6 4 3 9 2 8 7 5 10	1 1 1 1 1 1 1 1	1 2 3 4 5 6 7 8 9 10 11 12	1 4 9 3 12 10 10 10 12 3 9 4 1	1 8 12 8 5 5 1 12 5 12	1 3 9 1 9 9 1 9 3 3 1	1 6 9 10 5 2 11 8 3 4 7 12	1 12 12 12 12 12 12 12 12 12 12 12 12 12	1 11 3 4 8 7 6 5 9 10 2 12	1 9 3 1 3 1 3 9 9	1 5 1 12 5 8 8 1 12 8 12 8 12 8 12	1 10 3 9 12 4 4 12 9 3 10 1	1 9 10 8 11 2 5 3 4 6 12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P = 17, 19, 23
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

1 2	1 4	1 8	17	1	1	1 2	1															P f	e =	Z), '*,	12	2,	1	5,	2	1			
4	7	1	4	7	1	4	7																											
5	7	8	4	2	1	5	7				1	1	1	1	1	1		1	1	1	1	1												
7	4	1	7	4	1	7	4				5	1	5	1	5	1		5	1	5	1	5												
8	1	8	1	8	1	8	1				7	1	7	1	7	1		7	1	7	1	7												
											11	1	11	1	11	1	1	1	1 1	11	1	11												
1 2 4 7 8 11 13 14	1414141	1 8 4 13 2 11 7 14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	124781334	1 1 4 8 1 4 4 13 4 2 1 11 4 7 1 14	11111111111	1 2 4 7 8 11 13 14	14 14 4 14 1	1 8 4 13 2 11 7 14	11111111111	1 2 4 7 8 11 13 14	14144141			1 4 5 8 10 11 13 16 17 20	1 4 16 16 16 16 16 16 16 16 16 16 16	1 8 13 8 13 13 20 13 20	1 16 1 4 1 1 6 1 1 6 1 1 1 1 1 1 1 1 1 1	1 11 16 17 8 19 2 13 4 5 10 20	111111111111111111111111111111111111111	1 2 4 5 8 10 11 13 16 17 19 20	1 4 16 16 16 16 4 16 4 1 16 4 1	1 8 13 8 13 13 20 13 20	1 16 1 4 1 1 6 1 1 6 1 1 1 1 1 1 1 1 1 1	1 11 16 17 8 19 2 13 4 5 10 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 4 5 8 10 11 13 16 17 20	1 4 16 16 16 16 16 4 16 4 1	1 8 13 8 13 13 20 13 20	1 16 4 16 1 1 4 4 1 16 4 16 1 1 1 1 1 1	1 11 16 17 8 19 2 13 4 5 10 20	111111111111111111111111111111111111111	1 2 4 5 8 10 11 13 16 17 20	1 4 16 16 16 16 16 4 16 4 1

Idea (that doesn't quite work)

• Theorem: if P is prime, $A^{P-1} = 1 \pmod{P}$

- Pick a bunch of numbers at random from [1.. P-1]
 - Compute X^{p-1} mod P for each one
 If all results are 1, then say Prime

 - If at least one of them is not 1, then say Composite

Carmichael Numbers What about 561 = 3*11*17 • 2⁵⁶⁰ = 1 mod 561

- 4⁵⁶⁰ = 1 mod 561
- 5⁵⁶⁰ = 1 mod 561
- 7⁵⁶⁰ = 1 mod 561
- 8⁵⁶⁰ = 1 mod 561
- 10⁵⁶⁰ = 1 mod 561
- 14⁵⁶⁰ = 1 mod 561
-

- Carmichael numbers are rare (but there are an infinite number)
- Either all numbers in Z^*_N satisfy $X^{N-1} = 1 \mod N$ or at most half the numbers in ${\rm Z*}_{\rm N}$ satisfy X^{N-1} = 1 mod N

Witnesses and Certificates

- Certificate C that can be used to prove a property
 To show N is composite, find a number A such that 1 < GCD(A, N) < N
 - 178 is a Certificate that 11481 is composite
- Is there a certificate for primality?
- Prime Witness
 - A property that always holds for primes
 - · A property that only sometimes holds for composites

Euler Test

- N 1 mod N = -1 mod N, so we can think of N-1 as -1 in Z^*_N • For P prime, $a^{(p-1)/2} = 1$ or $a^{(p-1)/2} = -1$
 - Half of the values of a have $a^{(p-1)/2} = 1$ and half have $a^{(p-1)/2} = -1$
- But there are composite numbers that fool the Euler Test
 1729 = 7 * 13 * 19
 2⁸⁶⁴ = 1 mod 1729, 3⁸⁶⁴ = 1 mod 1729, 4⁸⁶⁴ = 1 mod 1729, ...

Lemma 14.32 (Motwani-Raghavan)

- Let N an odd composite that is not a power of a prime and suppose that for some a in Z* $_N^{}$ a(N-1)/2 = -1 mod N
- Let S be the set of numbers a in $Z^{\ast}{}_{N}$ where $a^{(N-1)/2}$ = -1 mod N or $a^{(N-1)/2}$ = 1 mod N
- Then $|S| \le \frac{1}{2} |Z_N^*|$
- Or in English: if the Euler Test passes with a -1, then at most half the values fool the test

Prime Testing Algorithm

- 1. If N is perfect power return Composite
- 2. Choose a bunch of random values b_1 , b_2 ,..., b_t from [1..n-1]
- 3. If GCD(b_j ,N) return Composite
- 4. $r_j = b_j^{(N-1)/2}$
- 5. If r_j != 1 and r_j != -1 return Composite
- If r_j = 1 for all j return Composite
- 7. Return prime

What could go wrong

- Composite number could fail line 5 and fail line 6 and be called prime
- Prime could be reported as composite on line 6
- Double sided error with failure probability 2-t

Miller-Rabin test

- Determine if n is prime
- Given an integer a, 1 < a < n,
 - Miller(n, a) returns either "maybe prime" or "definitely composite"
 For n prime, Miller(n, a) always says "maybe prime"
 - For n composite, $\mbox{Miller}(n,a)$ says "maybe prime" with probability at most % for a random a
- By running the Miller test repeatedly, we can make it arbitrary high probability

Fermat Test

- Fermat's little theorem For prime n, a⁽ⁿ⁻¹⁾ = 1 (mod n) for all a
- · For most composite numbers, this fails most of the time
- Unfortunately, there are set of composite numbers (Carmichael numbers) that satisfy this
 - {561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409, 314821, 334153, ...}

Miller-Rabin test

- · For a prime number n, the only square roots of 1 modulo n, are 1 and
- For $n = 2^{s}d + 1$, $a^{d} = 1 \pmod{n}$ or $a^{(2^{n}r)d} = -1 \pmod{n}$ for some $0 \le r \le n$
- For a composite number at most ¼ of values a satisfy these conditions

Pseudo-code

Input #1: n > 3, an odd integer to be tested for primality Input #2: k, the number of rounds of testing to perform Output: "composite" if n is found to be composite, "probably prime" atherwise

write n as $2^{r_i}d+1$ with d odd (by factoring out powers of 2 from n – 1) WitnessLoop: repeat k times: pick a random integer a in the range [2, n – 2]

 $x \leftarrow a^d \mod n$ if x = 1 or x = n - 1 then continue WitnessLoop

continue WitnessLoop repeat r − 1 times: x ← x² mod n if x = n − 1 then continue WitnessLoop return "composite" return "probably prime"

Other facts on Prime Testing

- Miller-Rabin test is deterministic if Extended Riemann Hypothesis is true
- 2002 a deterministic polynomial time test based on Cyclotomic Polynomials was discovered
 - Agrawal-Kayal-Saxena, IIT Kanpur
 - Not practical (termed galactic algorithm see Wikipedia)
- · Factoring is thought to be harder then primality testing • In practice, numbers of about 100 decimal digits are factorable in a few hours on a PC
 - · 250 decimal digit (829 bit) RSA keys have been factored (2700 CPU Years)
 - · Recommendation for RSA is 2048 bit keys

RSA

- RSA key is a number n=pq, where p and q are prime
- How do you generate random primes of 300 digits?
- · Generate random number of 300 digits and test if they are prime • Of course, there are simple tricks to avoid small divisors
- Prime number theorem: Probability of a random number less than N is prime is about 1/log N (Natural logarithm)
- For 300 digits, this is about 1 in 690