Announcements

• Today is the 21st day of the 21st year of the 21st century
Primality Testing

• Miller-Rabin test demonstrated importance of randomized algorithm
 • Break through result in 1980
• Depends on number theory (maybe a senior ugrad class)
 • But much of the algorithm can be appreciated without the theory
• The key concept is that of a witness
 • If something is true, a witness always says TRUE
 • If something is false, a witness says TRUE with probability less than ½
Primality testing

Is the number:
38,448,590,786,041,766,459,732,220,363,801,744,241,896,763,259,493,887,920,989,231,800,007,262,253,532,084,767,190,
7,441,618,354,889,045,484,455,604,450,713,181,265,743,757,650,808,578,235,094,058,535,442,090,523,274,067,570,229,4
06,671,451,796,017,542,179,880,527,768,546,296,447,905,493,082,191
prime?

• A number \(p \) is prime if its only proper divisors are 1 and \(p \), and is composite otherwise

• Small primes \(\{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, \ldots \} \)

• Simple primality testing algorithms
 • Trial division
 • Sieve of Eratosthenes
Why prime testing is important: cryptography

• RSA public key encryption
 • Relies on factoring “being hard”, $N = pq$ where p and q are prime
 • Recommendation is that N is 2048 bits with p and q roughly 1024 bits
 • 1024 bits is roughly 300 digits

• Need a way to generate “random primes”
 • Guess and check
Complexity of number problems

• Run time based on size of input
• Input N has size $\log_2 N$
• Polynomial time corresponds to polynomial in the size of the number
• Runtime polynomial in N is exponential in the number of bits
Bignum computation

- Arithmetic computation on large numbers – hundreds or thousands or millions of digits
- Run time expressed as a function of the number of digits
- Addition of two n-bit numbers: $O(n)$
- Multiplication of two n-bit numbers: $O(n^2)$ or $O(n^{3/2})$ or $O(n \log n \log \log n)$
- Bignum arithmetic implemented by storing numbers in an array of ints
 - 1024 bit number would require an array of 32 ints
Exponentiation: Compute A^N

• Do the computation mod M
 • $129038105814095380935^{8430981423091243809}$ MOD 10000000000000000000000

• Compute by repeated squaring

• A raised to 2^K can be computed in K multiplications
Greatest Common Divisor

- GCD(A, B) = D, where D is the largest number that divides both A and B
- Runs in O(n^2) time for n bit numbers

```python
function gcd(a, b)
    while b ≠ 0
        t := b
        b := a mod b
        a := t
    return a
```

A: 33707, B: 15207
A: 15207, B: 3293
A: 3293, B: 2035
A: 2035, B: 1258
A: 1258, B: 777
A: 777, B: 481
A: 481, B: 296
A: 296, B: 185
A: 185, B: 111
A: 111, B: 74
A: 74, B: 37
A: 37, B: 0
Prime testing – Idea: Modular arithmetic

• Let P be prime
• Consider the set of integers \{1, 2, 3, \ldots, P-1\} with the operation \ast, where multiplication is done mod P
• Can the structure of modular multiplication be used to show P is prime?
• Set with multiplication mod P referred to as \mathbb{Z}_P^*
Modular multiplication

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>5</td>
<td>11</td>
<td>4</td>
<td>10</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>14</td>
<td>8</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>10</td>
<td>4</td>
<td>11</td>
<td>5</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>3</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>12</td>
<td>7</td>
<td>2</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>11</td>
<td>7</td>
<td>3</td>
<td>12</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>11</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>3</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>3</td>
<td>8</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>14</td>
<td>6</td>
<td>13</td>
<td>5</td>
<td>12</td>
<td>4</td>
<td>11</td>
<td>3</td>
<td>10</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>11</td>
<td>4</td>
<td>12</td>
<td>5</td>
<td>13</td>
<td>6</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>3</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>9</td>
<td>3</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>9</td>
<td>3</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>7</td>
<td>3</td>
<td>14</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>13</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>12</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Zero divisors for integers mod N

• X is a zero divisor if AX = 0 mod N for some A != 0
• Fact: X is a zero divisor if and only if GCD(X, N) > 1

• \(Z^*_N = \{ y \in [1 .. N-1] \mid \text{GCD}(y, N) = 1 \} \)
• \(|Z^*_N| = \Phi(N) \)
Powers of elements

• Compute $A^1, A^2, A^3, \ldots, A^{p-1}$

\[P = 7, 11, 13 \]
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	15	13	9	1	2	4	8	16	15	13	9	1							
3	9	10	13	5	15	11	16	14	8	7	4	12	2	6	1							
4	16	13	1	4	16	13	1	4	16	13	1	4	16	13	1							
5	8	6	13	14	2	10	16	12	9	11	4	3	15	7	1							
6	2	12	4	7	8	14	16	11	5	10	3	9	6	12	4							
7	15	3	4	11	9	12	16	10	2	14	13	6	8	5	1							
8	13	2	16	9	4	15	1	8	2	16	9	4	15	1	8							
9	15	14	16	8	4	2	1	9	13	15	16	8	4	2	1							
10	15	14	16	8	4	2	1	9	13	15	16	8	4	2	1							
11	2	5	4	10	8	3	16	15	13	7	9	4	15	1								
12	8	11	13	3	2	7	5	16	9	6	5	14	10	15								
13	16	4	1	13	6	4	1	13	6	4	1	13	6	4								
14	9	7	13	12	15	6	16	3	8	10	4	5	2	11	1							
15	4	9	16	2	13	8	11	5	16	2	13	8	11	5								
16	1	16	1	16	1	16	1	16	1	16	1	16	1	16	1							

$P = 17, 19, 23$
<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>7</th>
<th>5</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

$P = 9, 12, 15, 21$
\(P = 9, 12, 15, 21 \)

\(Z^*_N \)
Idea (that doesn’t quite work)

• Theorem: if P is prime, $A^{P-1} = 1 \pmod{P}$
• Pick a bunch of numbers at random from $[1 \ldots P-1]$
 • Compute $X^{P-1} \pmod{P}$ for each one
 • If all results are 1, then say Prime
 • If at least one of them is not 1, then say Composite
Carmichael Numbers
What about $561 = 3 \cdot 11 \cdot 17$

- $2^{560} = 1 \mod 561$
- $4^{560} = 1 \mod 561$
- $5^{560} = 1 \mod 561$
- $7^{560} = 1 \mod 561$
- $8^{560} = 1 \mod 561$
- $10^{560} = 1 \mod 561$
- $14^{560} = 1 \mod 561$
- \ldots

- Carmichael numbers are rare (but there are an infinite number)
- Either all numbers in \mathbb{Z}^*_N satisfy $X^{N-1} = 1 \mod N$ or at most half the numbers in \mathbb{Z}^*_N satisfy $X^{N-1} = 1 \mod N$
Witnesses and Certificates

• Certificate C that can be used to prove a property
 • To show N is composite, find a number A such that $1 < \text{GCD}(A, N) < N$
 • 178 is a Certificate that 11481 is composite

• Is there a certificate for primality?

• Prime Witness
 • A property that always holds for primes
 • A property that only sometimes holds for composites
Euler Test

• $N - 1 \mod N = -1 \mod N$, so we can think of $N-1$ as -1 in \mathbb{Z}_{N}^{*}

• For P prime, $a^{(p-1)/2} = 1$ or $a^{(p-1)/2} = -1$
 • Half of the values of a have $a^{(p-1)/2} = 1$ and half have $a^{(p-1)/2} = -1$

• But there are composite numbers that fool the Euler Test
 • $1729 = 7 \times 13 \times 19$
 • $2^{864} = 1 \mod 1729, 3^{864} = 1 \mod 1729, 4^{864} = 1 \mod 1729, \ldots$
Lemma 14.32 (Motwani-Raghavan)

- Let \(N \) an odd composite that is not a power of a prime and suppose that for some \(a \) in \(\mathbb{Z}_N^* \), \(a^{(N-1)/2} = -1 \mod N \)

- Let \(S \) be the set of numbers \(a \) in \(\mathbb{Z}_N^* \) where \(a^{(N-1)/2} = -1 \mod N \) or \(a^{(N-1)/2} = 1 \mod N \)

- Then \(|S| \leq \frac{1}{2} |\mathbb{Z}_N^*| \)

- Or in English: if the Euler Test passes with a -1, then at most half the values fool the test
Prime Testing Algorithm

1. If \(N \) is perfect power return Composite
2. Choose a bunch of random values \(b_1, b_2, \ldots, b_t \) from \([1..n-1]\)
3. If \(\text{GCD}(b_j,N) \) return Composite
4. \(r_j = b_j^{(N-1)/2} \)
5. If \(r_j \neq 1 \) and \(r_j \neq -1 \) return Composite
6. If \(r_j = 1 \) for all \(j \) return Composite
7. Return prime
What could go wrong

• Composite number could fail line 5 and fail line 6 and be called prime

• Prime could be reported as composite on line 6

• Double sided error with failure probability 2^{-t}
Miller-Rabin test

• Determine if n is prime

• Given an integer a, 1 < a < n,
 • Miller(n, a) returns either “maybe prime” or “definitely composite”
 • For n prime, Miller(n, a) always says “maybe prime”
 • For n composite, Miller(n, a) says “maybe prime” with probability at most ¼ for a random a

• By running the Miller test repeatedly, we can make it arbitrary high probability
Fermat Test

• Fermat’s little theorem
 • For prime \(n \), \(a^{(n-1)} = 1 \pmod{n} \) for all \(a \)

• For most composite numbers, this fails most of the time

• Unfortunately, there are set of composite numbers (Carmichael numbers) that satisfy this
 • \{561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409, 314821, 334153, \...\}
Miller-Rabin test

• For a prime number n, the only square roots of 1 modulo n, are 1 and -1
• For $n = 2^s d + 1$, $a^d \equiv 1 \pmod{n}$ or $a^{(2^r)d} \equiv -1 \pmod{n}$ for some $0 \leq r < s$
• For a composite number at most $\frac{1}{4}$ of values a satisfy these conditions
Pseudo-code

Input #1: $n > 3$, an odd integer to be tested for primality
Input #2: k, the number of rounds of testing to perform
Output: “composite” if n is found to be composite, “probably prime” otherwise

write n as $2^r \cdot d + 1$ with d odd (by factoring out powers of 2 from $n - 1$)
WitnessLoop: repeat k times:
 pick a random integer a in the range $[2, n - 2]$
 $x \leftarrow a^d \mod n$
 if $x = 1$ or $x = n - 1$ then
 continue WitnessLoop
 repeat $r - 1$ times:
 $x \leftarrow x^2 \mod n$
 if $x = n - 1$ then
 continue WitnessLoop
 return “composite”
return “probably prime”
Other facts on Prime Testing

• Miller-Rabin test is deterministic if Extended Riemann Hypothesis is true

• 2002 a deterministic polynomial time test based on Cyclotomic Polynomials was discovered
 • Agrawal-Kayal-Saxena, IIT Kanpur
 • Not practical (termed galactic algorithm – see Wikipedia)

• Factoring is thought to be harder then primality testing
 • In practice, numbers of about 100 decimal digits are factorable in a few hours on a PC
 • 250 decimal digit (829 bit) RSA keys have been factored (2700 CPU Years)
 • Recommendation for RSA is 2048 bit keys
RSA

• RSA key is a number \(n=pq \), where \(p \) and \(q \) are prime
• How do you generate random primes of 300 digits?
 • Generate random number of 300 digits and test if they are prime
 • Of course, there are simple tricks to avoid small divisors
• Prime number theorem: Probability of a random number less than \(N \) is prime is about \(1/\log N \) (Natural logarithm)
• For 300 digits, this is about 1 in 690