CSEP 521: Applied Algorithms
Lecture 5 Average Case Analysis
Richard Anderson
January 19, 2021

Average Case Performance of Algorithms

- Main topics for today
- Average case of stable marriage algorithm
- Coupon Collector Problem
- Formal setting, input is drawn randomly from a probability distribution on legal inputs
- Standard runtime model
- $T(N)=\max \{$ over inputs I of size $N\} T_{A}(I)$
- Average case runtime
- $T(N)=$ average \{over inputs I of size N using probability distribution $P\} T_{A}(I)$

Formal notions

- Perfect matching
- Ranked preference lists
- Stability

Formal notions - Perfect matching - Ranked preference lists - Stability

Announcements

- Office hours
- Oscar: 5-6 pm, Monday and Friday
- Richard: 11am-noon, Monday, 2-3 pm Friday
- Homework 3 is available
- Today, Stable Matching (Stable Marriage)
- Recommended reading: Kleinberg-Tardos, Chapter 1
- Thursday, Random algorithm for primality testing

Stable Matching

- Setting:
- Assign TAs to Instructors
- Avoid having TAs and Instructors wanting changes
- E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Example (1 of 3)

$m_{1}: w_{1} w_{2}$	$m_{1} \bigcirc$	w_{1}
$m_{2}: w_{2} w_{1}$		
$w_{1}: m_{1} m_{2}$		
$w_{2}: m_{2} m_{1}$	$m_{2} \bigcirc$	w_{2}

Formal Problem

- Input
- Preference lists for $m_{1}, m_{2}, \ldots, m_{n}$
- Preference lists for $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}$
- Output
- Perfect matching M satisfying stability property:

If $\left(m^{\prime}, w^{\prime}\right) \in M$ and $\left(m^{\prime \prime}, w^{\prime \prime}\right) \in M$ then
(m^{\prime} prefers w^{\prime} to $\mathrm{w}^{\prime \prime}$) or ($\mathrm{w}^{\prime \prime}$ prefers $\mathrm{m}^{\prime \prime}$ to m^{\prime})
[In other words, m^{\prime} and $\mathrm{w}^{\prime \prime}$ do not want to pair up.]

Algorithm

Initially all m in M and w in W are free While there is a free m
w highest on m's list that m has not proposed to if w is free, then match (m, w) else
suppose $\left(m_{2}, w\right)$ is matched
if w prefers m to m_{2}
unmatch ($\left.m_{2}, w\right)$
match (m, w)

Example (3 of 3)

$m_{1}: w_{1} w_{2}$	$m_{1} \bigcirc w_{1}$
$m_{2}: w_{2} w_{1}$	
$w_{1}: m_{2} m_{1}$	
$w_{2}: m_{1} m_{2}$	$m_{2} \bigcirc$

Idea for an Algorithm
m proposes to w
If w is unmatched, w accepts
If w is matched to m_{2}
If w prefers m to $m_{2} \quad w$ accepts m, dumping m_{2}
If w prefers m_{2} to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Example

$m_{1}: w_{1} w_{2} w_{3}$	m_{1}	
$m_{2}: w_{1} w_{3} w_{2}$		w_{1}
$m_{3}: w_{1} w_{2} w_{3}$	$m_{2} \bigcirc w_{2}$	
$w_{1}: m_{2} m_{3} m_{1}$		
$w_{2}: m_{3} m_{1} m_{2}$		
$w_{3}: m_{3} m_{1} m_{2}$	$m_{3} \bigcirc$	

Cleaned up example

Order: $m_{1}, m_{2}, m_{3}, m_{1}, m_{3}, m_{1}$

Claim: If an m reaches the end of its list, then all the w's are matched

When the algorithms halts, every w is matched
Why?
Hence, the algorithm finds a perfect matching

The resulting matching is stable
Suppose
$\left(m_{1}, w_{1}\right) \in M,\left(m_{2}, w_{2}\right) \in M$
m_{1} prefers w_{2} to w_{1}

How could this happen?

Result

- Simple, $O\left(n^{2}\right)$ algorithm to compute a stable matching
- Corollary
- A stable matching always exists

| M-rank and W-rank of matching |
| :--- | :--- |
| - m-rank: position of matching w in $m_{1}: w_{1} w_{2} w_{3}$
 preference list $m_{2}: w_{1} w_{3} w_{2}$
 - M-rank: sum of m-ranks $m_{3}: w_{1} w_{2} w_{3}$
 - w-rank: position of matching m in $w_{1}: m_{2} m_{3} m_{1}$
 preference list $w_{2}: m_{3} m_{1} m_{2}$
 - W-rank: sum of w-ranks $w_{3}: m_{3} m_{1} m_{2}$
 What is the M-rank?
 What is the W-rank? |

Algorithm under specified

- Many different ways of picking m's to propose
- Surprising result
- All orderings of picking free m's give the same result
- Proving this type of result
- Reordering argument
- Prove algorithm is computing something mores specific
- Show property of the solution - so it computes a specific stable matching

Breakout groups

Suppose there are n m's, and n w's

- What is the minimum possible M-rank?
- What is the maximum possible M-rank?
- Suppose each m is matched with a random w, what is the expected M-rank?

Random Preferences

Suppose that the preferences are completely random

$$
\begin{aligned}
& m_{1}: w_{8} w_{3} w_{1} w_{5} w_{9} w_{2} w_{4} w_{6} w_{7} w_{10} \\
& m_{2}: w_{7} w_{10} w_{1} w_{9} w_{3} w_{4} w_{8} w_{2} w_{5} w_{6} \\
& \ldots \\
& w_{1}: m_{1} m_{4} m_{9} m_{5} m_{10} m_{3} m_{2} m_{6} m_{8} m_{7} m_{7} w_{2}: m_{5} m_{8} m_{1} m_{3} m_{2} m_{7} m_{9} m_{10} m_{4} m_{6}
\end{aligned}
$$

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

Stable Matching Results

- Averages of 5 runs
- Much better for M than W
- Why is it better for M ?
- What is the growth of m rank and w-rank as a function of n ?

Coupon Collector Problem

- n types of coupons
- Each round you receive a random coupon
- How many rounds until you have received all types of coupons
- p_{i} is the probability of getting a collected
t_{i} is the time to receive the i -th type of coupon after i-1 have been received
$p_{i}=\frac{n-(i-1)}{n}=\frac{n-i+1}{n}$
t_{i} has geometric distribution with expectation
$\frac{1}{p_{i}}=\frac{n}{n-i+1}$
$\mathrm{E}(T)=\mathrm{E}\left(t_{1}+t_{2}+\cdots+t_{n}\right)$ $-\mathrm{E}\left(t_{1}\right)+\mathrm{E}\left(t_{2}\right)+\cdots+\mathrm{E}\left(t_{\mathrm{n}}\right)$ $-\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{n}}$ $=\frac{n}{n}+\frac{n}{n-1}+\cdots+\frac{n}{1}$ $=n \cdot\left(\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}\right)$
$=n \cdot H_{n}$.
$\mathrm{E}(T)=n \cdot H_{n}=n \log n+\gamma n+\frac{1}{2}+O(1 / n)$

Stable Matching and Coupon Collecting

- Assume random preference lists
- Runtime of algorithm determined by number of proposals until all w's are matched
- Each proposal can be viewed ${ }^{1}$ as asking a random w
- Number of proposals corresponds to number of steps in coupon collector problem

A more careful analysis

What about the W rank?

- Principle of deferred randomness
- Generate random list, traverse list
- Traverse list, generating random elements
- Suppose that i-1 M's are matched, expected number of proposals until i matches
- What is the chance that X proposes to an unmatched W ?
- If X has already proposed j times, the chance is $(n-(i-j-1)) /(n-j)>(n-(i-1)) / n=p_{i}$
- The conditioning gives a greater probability of success, reducing the expected time to success

Balls and boxes

- N boxes, repeatedly assign balls to random boxes
- Coupon collecting - expected number of balls until every box is occupied
- How about if we assign K balls at random to N boxes
- How many cells are occupied?
- What is the expected number of balls in the first box?
- What is the expected maximum for the number of balls assigned to any cell?

