CSEP 521: Applied Algorithms Lecture 5 Average Case Analysis

Richard Anderson January 19, 2021

Announcements

- Office hours
- Oscar: 5-6 pm, Monday and Friday
- Richard: 11am-noon, Monday, 2-3 pm Friday
- Homework 3 is available
- Today, Stable Matching (Stable Marriage)
 - Recommended reading: Kleinberg-Tardos, Chapter 1
- Thursday, Random algorithm for primality testing

Average Case Performance of Algorithms

- Main topics for today
 Average case of stable marriage algorithm
 - Coupon Collector Problem
- Formal setting, input is drawn randomly from a probability distribution on legal inputs
- Standard runtime model
- T(N) = max {over inputs I of size N} TA(I)
- Average case runtime
 - T(N) = average {over inputs I of size N using probability distribution P} T_A(I)

Stable Matching

- Setting:
- Assign TAs to Instructors
- Avoid having TAs and Instructors wanting changes
 - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Formal notions

- · Perfect matching
- Ranked preference lists
- Stability

Example (1 of 3) m₁: w₁ w₂ m_1 \bigcirc W₁ m₂: w₂ w₁ w₁: m₁ m₂ w₂: m₂ m₁ $m_2 \bigcirc$ \bigcirc W₂

Formal Problem Input Preference lists for m₁, m₂, ..., m_n Preference lists for w₁, w₂, ..., w_n Output Perfect matching M satisfying stability property: If (m', w') ∈ M and (m'', w'') ∈ M then (m' prefers w' to w'') or (w'' prefers m'' to m') [In other words, m' and w'' do not want to pair up.]

```
Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts
If w is matched to m2
If w prefers m to m2, w accepts m, dumping m2
If w prefers m2 to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to
```

```
Algorithm

Initially all m in M and w in W are free
While there is a free m
w highest on m's list that m has not proposed to
if w is free, then match (m, w)
else
suppose (m<sub>2</sub>, w) is matched
if w prefers m to m<sub>2</sub>
unmatch (m<sub>2</sub>, w)
match (m, w)
```


Cleaned up example m₁: w₁ w₂ w₃ m₂: w₁ w₃ w₂ m₃: w₁ w₂ w₃ $w_1: m_2 m_3 m_1$ w₂: m₃ m₁ m₂ w₃: m₃ m₁ m₂ Order: $\mathbf{m_1}, \ \mathbf{m_2}, \ \mathbf{m_3}, \ \mathbf{m_1}, \ \mathbf{m_3}, \ \mathbf{m_1}$

Does this work?

- Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
 m's proposals get worse (have higher m-rank)

 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n^2 steps

When the algorithms halts, every w is matched

Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

 $(m_1, w_1) \in M, (m_2, w_2) \in M$ m₁ prefers w₂ to w₁

How could this happen?

Result

- Simple, O(n2) algorithm to compute a stable matching
- Corollary
 - · A stable matching always exists

Algorithm under specified

- Many different ways of picking m's to propose
- Surprising result
- All orderings of picking free m's give the same result
- · Proving this type of result
 - · Reordering argument
 - Prove algorithm is computing something mores specific
 - Show property of the solution so it computes a specific stable matching

M-rank and W-rank of matching

- $\begin{array}{ll} \bullet \text{ m-rank: position of matching w in} & m_1\!\!: w_1 \; w_2 \; w_3 \\ \text{preference list} & m_2\!\!: w_1 \; w_3 \; w_2 \end{array}$
- M-rank: sum of m-ranks
- w-rank: position of matching m in preference list
- W-rank: sum of w-ranks

m₁: w₁ w₂ w₃ m₄ m₄ m₅: w₁ w₂ w₃ m₅: w₁ w₂ w₃ m₅: w₁ w₂ w₃ m₇: w₁ w₂: m₃ m₁ m₂ m₃: m₁ m₂ m₃: m

What is the M-rank?

What is the W-rank?

Breakout groups Suppose there are n m's, and n w's

- What is the minimum possible M-rank?
- What is the maximum possible M-rank?
- Suppose each m is matched with a random w, what is the expected M-rank?

Random Preferences

Suppose that the preferences are completely random

 $\begin{array}{l} m_1; w_8 \ w_3 \ w_1 \ w_5 \ w_9 \ w_2 \ w_4 \ w_6 \ w_7 \ w_{10} \\ m_2; w_7 \ w_{10} \ w_1 \ w_9 \ w_3 \ w_4 \ w_8 \ w_2 \ w_5 \ w_6 \\ \dots \\ w_1; \ m_1 \ m_4 \ m_9 \ m_5 \ m_{10} \ m_3 \ m_2 \ m_5 \ m_8 \ m_7 \\ w_2; \ m_5 \ m_8 \ m_1 \ m_3 \ m_2 \ m_7 \ m_9 \ m_{10} \ m_4 \ m_6 \end{array}$

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

Stable Matching Results

- Averages of 5 runs
- Much better for M than W
- Why is it better for M?

 What is the growth of mrank and w-rank as a function of n?

Coupon Collector Problem

- n types of coupons
- Each round you receive a random coupon
- How many rounds until you have received all types of coupons
- p_i is the probability of getting a new coupon after i-1 have been collected
- t_i is the time to receive the i-th type of coupon after i-1 have been received

Stable Matching and Coupon Collecting

- Assume random preference lists
- Runtime of algorithm determined by number of proposals until all w's are matched.
- Each proposal can be viewed¹ as asking a random w
- Number of proposals corresponds to number of steps in coupon collector problem

There are some technicalities here that are being ignored

A more careful analysis

- · Principle of deferred randomness
 - Generate random list, traverse list
 - Traverse list, generating random elements
- • Suppose that i - 1 M's are matched, expected number of proposals until i matches
 - $\bullet\,$ What is the chance that X proposes to an unmatched W?
 - If X has already proposed j times, the chance is $(n (i j 1))/(n-j) > (n-(i-1))/n = p_i$
 - The conditioning gives a greater probability of success, reducing the expected time to success

What about the W rank?

Balls and boxes

- N boxes, repeatedly assign balls to random boxes
- Coupon collecting expected number of balls until every box is occupied
- How about if we assign K balls at random to N boxes
 - · How many cells are occupied?
 - What is the expected number of balls in the first box?
 - What is the expected maximum for the number of balls assigned to any cell?