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Announcements

e Office hours

e Oscar: 5-6 pm, Monday and Wednesday
* Richard: 11am-noon, Monday, 2-3 pm Friday

* Homework 3 is available

* Today, Stable Matching (Stable Marriage)

« Recommended reading: Kleinberg-Tardos, Chapter 1

* Thursday, Random algorithm for primality testing



Average Case Performance of Algorithms

* Main topics for today
* Average case of stable marriage algorithm
e Coupon Collector Problem

* Formal setting, input is drawn randomly from a probability
distribution on legal inputs

e Standard runtime model
* T(N) = max {over inputs | of size N} T,(I)

* Average case runtime
* T(N) = average {over inputs | of size N using probability distribution P} T,(l)



Stable Matching

* Setting:
* Assign TAs to Instructors

* Avoid having TAs and Instructors wanting changes

* E.g., Prof A. would rather have student X than her current TA, and student X would rather
work for Prof A. than his current instructor.



Formal notions

* Perfect matching
* Ranked preference lists
e Stability
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Example (1 of 3)

my: W, w,
m,: W, W,
W.im; m,
W, m, m,
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Example (2 of 3)

my: W, W,
m,: W, W,
wim; m,
W,: m; m,
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Example (3 of 3)

my: W, W,
m,: W, W,
Wi m, my
W,: m; m,
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Formal Problem

* Input
* Preference lists form;, m,, ..., m
* Preference lists forw,, w,, ..., w

* Output
* Perfect matching M satisfying stability property:

n

n

If (m’, w) € Mand (m”, w”’) € M then
(m’ prefers w’ to w”’) or (w”’ prefers m” to m’)
[In other words, m” and w”’ do not want to pair up.]



|[dea for an Algorithm

m proposes to w
If wis unmatched, w accepts

If wis matched to m,
If w prefers m to m, w accepts m, dumping m,
If w prefers m, to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it
has not already proposed to



Algorithm

Initially all m in M and w in W are free
While there is a free m
w highest on m’s list that m has not proposed to
If wis free, then match (m, w)
else
suppose (m,, w) is matched
If w prefers m to m,
unmatch (m,, w)
match (m, w)



Example

m: W, W, Wy
m,: W; W5 W,

Mg Wy, W, Wy

W, m, Mg my
W,: Mg m; m,

W, Mg m; m,
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Cleaned up example

m: W, W, Wy
m,: W; W5 W,

Mg Wy, W, Wy

W, m, Mg my
W,: Mg m; m,

W, Mg m; m,

Order: m,, m,, m,, m;, my, My



Does this work?

* Does it terminate?
* |s the result a stable matching?

* Begin by identifying invariants and measures of progress
* m’s proposals get worse (have higher m-rank)
* Once w is matched, w stays matched
* W’s partners get better (have lower w-rank)



Claim: If an m reaches the end of its list, then
all the w’s are matched



Claim: The algorithm stops in at most n? steps



When the algorithms halts, every w is matched

Why?

Hence, the algorithm finds a perfect matching



The resulting matching is stable

Suppose @ @

(my, wy) e M, (m,, w,) e M R
m, prefers w, to w;, RN
(m)——w)

How could this happen?




Result

* Simple, O(n?) algorithm to compute a stable matching

e Corollary
* A stable matching always exists



Algorithm under specified

* Many different ways of picking m’s to propose

 Surprising result
* All orderings of picking free m’s give the same result

* Proving this type of result
* Reordering argument

* Prove algorithm is computing something mores specific
* Show property of the solution —so it computes a specific stable matching



M-rank and W-rank of matching

* m-rank: position of matching w in

preference list
e M-rank: sum of m-ranks

e w-rank: position of matching min

preference list
 W-rank: sum of w-ranks

My. Wy Wy W m; W,
M, W, Wy W,

My W, W, Wy

ms W
W4: My my m, m, W,

What is the M-rank?

What is the W-rank?



Breakout groups
Suppose there are n m’s, and n w’s

* What is the minimum possible M-rank?
* What is the maximum possible M-rank?

e Suppose each m is matched with a random w, what is the expected
M-rank?



Random Preferences

Suppose that the preferences are completely
random

If there are n m’s and n w’s, what is the expected
value of the M-rank and the W-rank when the
proposal algorithm computes a stable matching?



Stable Matching Results

-rank w-rank

e Averages of 5 runs w a0 osos
500 7.52 66.95

* Much better for M than W o 7 ses
5 . 75.87

* Why is it better for M? o e e

1000 6.80 146.93

1000 6.50 154.71

1000 7.14 133.53

1000 7.44 128.96

. 1000 7.36 137.85

* What is the growth of m- 1000 708 14040
rank and w-rank as a - o N
funCt|On Of n? 2000 7.50 263.78
2000 11.42 175.17

2000 7.16 274.76

2000 7.54 261.60

2000 8.29 246.62



Coupon Collector Problem

n—(G—-1) n—i+1

o= n - n
* n types of coupons
e Each round you receive a random t; has geometric distribution with expectation
coupon 1l __n
: ?; —i+1
* How many rounds until you have pi  moit
received all types of coupons E(T) =E(t: +t2 + -)—- +tn)
. - . :E(t1)+E(t2 +""|‘E(tn)
* p; is the probability of getting a L )
new coupon after i-1 have been =—+—+- -+ —
p1 b2 DPn
collected n n n
. : . : I E
* t. is the time to receive the i-th n f— ) "
type of coupon after i-1 have been —n. (T F ot _)
received n
=n-H,.

1
E(T)=n-H, =nlogn+yn+ 3 + O(1/n).



Stable Matching and Coupon Collecting

* Assume random preference lists

* Runtime of algorithm
determined by number of
proposals until all w’s are
matched

 Each proposal can be viewed* as
asking a random w

* Number of proposals
corresponds to number of steps
in coupon collector problem

There are some technicalities here that are being ignored



A more careful analysis

* Principle of deferred randomness
* Generate random list, traverse list
* Traverse list, generating random elements

e Suppose thati-1 M’s are matched, expected number of proposals until i
matches
* What is the chance that X proposes to an unmatched W?
* If X has already proposed j times, the chance is (n— (i —j - 1))/(n-j) > (n-(i-1))/n = p,
* The conditioning gives a greater probability of success, reducing the expected time
to success



What about the W rank?



Balls and boxes

* N boxes, repeatedly assign balls to random boxes

* Coupon collecting — expected number of balls until every box is
occupied

* How about if we assign K balls at random to N boxes
* How many cells are occupied?
 What is the expected number of balls in the first box?
 What is the expected maximum for the number of balls assigned to any cell?



