
CSEP 521: Applied Algorithms
Lecture 5 Average Case Analysis

Richard Anderson

January 19, 2021

Announcements

• Office hours
• Oscar: 5-6 pm, Monday and Wednesday

• Richard: 11am-noon, Monday, 2-3 pm Friday

• Homework 3 is available

• Today, Stable Matching (Stable Marriage)
• Recommended reading: Kleinberg-Tardos, Chapter 1

• Thursday, Random algorithm for primality testing

Average Case Performance of Algorithms

• Main topics for today
• Average case of stable marriage algorithm
• Coupon Collector Problem

• Formal setting, input is drawn randomly from a probability
distribution on legal inputs

• Standard runtime model
• T(N) = max {over inputs I of size N} TA(I)

• Average case runtime
• T(N) = average {over inputs I of size N using probability distribution P} TA(I)

Stable Matching

• Setting:
• Assign TAs to Instructors

• Avoid having TAs and Instructors wanting changes
• E.g., Prof A. would rather have student X than her current TA, and student X would rather

work for Prof A. than his current instructor.

Formal notions

• Perfect matching

• Ranked preference lists

• Stability

m1 w1

m2 w2

Example (1 of 3)

m1: w1 w2

m2: w2 w1

w1: m1 m2

w2: m2 m1

m1

m2 w2

w1

Example (2 of 3)

m1: w1 w2

m2: w1 w2

w1: m1 m2

w2: m1 m2

m1

m2 w2

w1

Example (3 of 3)

m1: w1 w2

m2: w2 w1

w1: m2 m1

w2: m1 m2

m1

m2 w2

w1

Formal Problem

• Input
• Preference lists for m1, m2, …, mn

• Preference lists for w1, w2, …, wn

• Output
• Perfect matching M satisfying stability property:

If (m’, w’) M and (m’’, w’’) M then
(m’ prefers w’ to w’’) or (w’’ prefers m’’ to m’)

[In other words, m’ and w’’ do not want to pair up.]

Idea for an Algorithm

m proposes to w
If w is unmatched, w accepts

If w is matched to m2

If w prefers m to m2 w accepts m, dumping m2

If w prefers m2 to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it
has not already proposed to

Algorithm

Initially all m in M and w in W are free

While there is a free m

w highest on m’s list that m has not proposed to

if w is free, then match (m, w)

else

suppose (m2, w) is matched

if w prefers m to m2

unmatch (m2, w)

match (m, w)

Example

m1: w1 w2 w3

m2: w1 w3 w2

m3: w1 w2 w3

w1: m2 m3 m1

w2: m3 m1 m2

w3: m3 m1 m2

m1

m2 w2

w1

m3 w3

Cleaned up example

m1: w1 w2 w3

m2: w1 w3 w2

m3: w1 w2 w3

w1: m2 m3 m1

w2: m3 m1 m2

w3: m3 m1 m2

m1

m2 w2

w1

m3 w3

Order: m1, m2, m3, m1, m3, m1

Does this work?

• Does it terminate?

• Is the result a stable matching?

• Begin by identifying invariants and measures of progress
• m’s proposals get worse (have higher m-rank)

• Once w is matched, w stays matched

• w’s partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then
all the w’s are matched

Claim: The algorithm stops in at most n2 steps

When the algorithms halts, every w is matched

Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

(m1, w1) M, (m2, w2) M
m1 prefers w2 to w1

How could this happen?

m1 w1

m2 w2

Result

• Simple, O(n2) algorithm to compute a stable matching

• Corollary
• A stable matching always exists

Algorithm under specified

• Many different ways of picking m’s to propose

• Surprising result
• All orderings of picking free m’s give the same result

• Proving this type of result
• Reordering argument

• Prove algorithm is computing something mores specific
• Show property of the solution – so it computes a specific stable matching

M-rank and W-rank of matching

• m-rank: position of matching w in
preference list

• M-rank: sum of m-ranks

• w-rank: position of matching m in
preference list

• W-rank: sum of w-ranks

m1: w1 w2 w3

m2: w1 w3 w2

m3: w1 w2 w3

w1: m2 m3 m1

w2: m3 m1 m2

w3: m3 m1 m2

m1 w1

m2 w2

m3 w3

What is the M-rank?

What is the W-rank?

Breakout groups
Suppose there are n m’s, and n w’s

• What is the minimum possible M-rank?

• What is the maximum possible M-rank?

• Suppose each m is matched with a random w, what is the expected
M-rank?

Random Preferences

Suppose that the preferences are completely

random

If there are n m’s and n w’s, what is the expected

value of the M-rank and the W-rank when the

proposal algorithm computes a stable matching?

m1: w8 w3 w1 w5 w9 w2 w4 w6 w7 w10

m2: w7 w10 w1 w9 w3 w4 w8 w2 w5 w6

…

w1: m1 m4 m9 m5 m10 m3 m2 m6 m8 m7

w2: m5 m8 m1 m3 m2 m7 m9 m10 m4 m6

…

Stable Matching Results

• Averages of 5 runs

• Much better for M than W

• Why is it better for M?

• What is the growth of m-
rank and w-rank as a
function of n?

n m-rank w-rank
500 5.10 98.05

500 7.52 66.95

500 8.57 58.18

500 6.32 75.87

500 5.25 90.73

500 6.55 77.95

1000 6.80 146.93

1000 6.50 154.71

1000 7.14 133.53

1000 7.44 128.96

1000 7.36 137.85

1000 7.04 140.40

2000 7.83 257.79

2000 7.50 263.78

2000 11.42 175.17

2000 7.16 274.76

2000 7.54 261.60

2000 8.29 246.62

Coupon Collector Problem

• n types of coupons

• Each round you receive a random
coupon

• How many rounds until you have
received all types of coupons

• pi is the probability of getting a
new coupon after i-1 have been
collected

• ti is the time to receive the i-th
type of coupon after i-1 have been
received

Stable Matching and Coupon Collecting

• Assume random preference lists

• Runtime of algorithm
determined by number of
proposals until all w’s are
matched

• Each proposal can be viewed1 as
asking a random w

• Number of proposals
corresponds to number of steps
in coupon collector problem

1There are some technicalities here that are being ignored

A more careful analysis

• Principle of deferred randomness
• Generate random list, traverse list

• Traverse list, generating random elements

• Suppose that i - 1 M’s are matched, expected number of proposals until i
matches

• What is the chance that X proposes to an unmatched W?

• If X has already proposed j times, the chance is (n – (i – j - 1))/(n-j) > (n-(i-1))/n = pi

• The conditioning gives a greater probability of success, reducing the expected time
to success

What about the W rank?

Balls and boxes

• N boxes, repeatedly assign balls to random boxes

• Coupon collecting – expected number of balls until every box is
occupied

• How about if we assign K balls at random to N boxes
• How many cells are occupied?

• What is the expected number of balls in the first box?

• What is the expected maximum for the number of balls assigned to any cell?

