
CSEP 521: Applied Algorithms
Lecture 3  Randomized Algorithms

Richard Anderson

January 12, 2021



Announcements

• Homework deadline shifted to Thursday (including HW 1) 
• But distribution will remain Tuesdays (HW 2 has been posted)

• Sign up for Gradescope (?)



Randomized Algorithms

• Randomization comes up in many different ways in computation

• Illustrate different ways randomization is used by example algorithms
• Algorithmic Techniques + Analysis Techniques
• Demonstrate some incredibly cool idea that are foundational for computing

• K-th largest problem (median problem)
• Randomization to avoid bad case
• Random sampling 

• Random sampling to look for solutions

• Reordering to avoid bad case solutions



Probability theory

• Basic ideas: 
• Sample space and events

• Random variables

• Expectation: E(X) – average value of X

• Linearity of expectation:  E(X + Y) = E(X) + E(Y)

• Conditional Probability: P(A | B)

• Independence: P(A | B) = P(A)

• Great review videos
• Tim Roughgarden (ex-Stanford), Videos 7.1 and 7.2

• Many other references



Randomized Algorithms
• How can random choices be used to make algorithms efficient?

• Suppose you have a minimization problem, where given a solution 
you can easily compute the value of the solution

• Now suppose you have an algorithm, which returns a specific optimal 
solutions with probability p.

• Can you find an optimal solution?  What can go wrong?

S



Mincut problem: Karger’s Algorithm

• Graph problem

• Random result – might be correct

• Given an undirected graph, partition the vertices into two non-empty 
pieces to minimize the edges between the pieces

• Undirected graph with parallel edges

Notes:
Different from the standard mincut problem presented along with Network Flow
The algorithm presented is not very efficient, but can be improved to be faster than any known 
deterministic algorithm for the problem



Minimum Cut Problem

• Given an undirected graph with parallel edges,  find non-empty sets S 
and S’ that minimized the number of edges between S and S’



Edge contraction operation

Observation:  The number of edges in the mincut of G/E is at least as 
great as the number of edges in a mincut of G



Randomized Algorithm









Analysis

• Let C be a min cut (where C is the set of edges between sets of 
vertices S and S’ and |C| = k).  What is the probability that C survives 
the contraction process?

• G has at least kn/2 edges,  otherwise G would have a vertex of degree 
less than k (and consequently a cut of size less than k).

• Probability that the first edge picked is in C is at most k / (nk/2) = 2/n



Conditional Probabilities

Ei: Event of not picking an edge from C on the i-th step

Probability that no edges from C are picked:

p = Prob[E1] Prob[E2 | E1] Prob[E3 |E1 E2] … Prob [En-2 |E1 E2… En-3]

Prob[Ei | E1 E2 . . . Ei-1 ] >= 1 – 2 / (n- i + 1) = (n – i – 1) / (n – i + 1)

p >= (n-2)/ n * (n-3) / (n-1) * (n-4) / (n-2)* . . . * 2/4 * 1/3 = 2 / n(n-1)



Min Cut Result

• Probability that C survives is at least 2 / n(n-1) on one iteration

• If we repeat the algorithm n(n-1) / 2 times we have probability at 
least  1 - 1/e that C has survived at least once

• Mathematical fact:  (1 – 1/k)k < 1/e

• If we run O(n2 log n) iterations, we have the probability of at least 
1 – 1/n of finding a mincut



Binary planar partition

• S = {s1, s2, . . . sn}: non-intersecting line segments in the plane

• Binary tree,  each node v of the tree is a region r(v) of the plane and 
has a line l(v) which separates r(v) into regions r1(v) and r2(v) which 
are associated with it children

• The line segments are then cut up and assigned to the associated leaf 
regions



Motivation:  hidden surface elimination

• 2-D Version, draw the line segments visible from any point in space
• Painters algorithm: draw the lines from back to front in viewing direction

• Tree traversal algorithm.  Determine which side of the line you are on 
for each node.  Traverse the subtree on the other side of the line, 
then the subtree on your side of the line

• Run time is proportional to the size of the tree
• Tree size O(n)?  O(n log n)?  O(n2)?



Greedy Algorithm

• Permutation of line 
segments

• While a region has more 
than one segment
• Choose the next segment, 

and use its line to split 
segments



Warmup exercises (breakout)

• Show that there exists a set of line segments for which no binary 
planar partition can avoid breaking up some of the segments into 
pieces, if each segment I to lie in a different region of the partition

• What is a bad case of partitioning
• Layout + choice of tree



Random algorithm

• Choose the segments in a random order

• Result: Expected number of partitions is O(n log n)



Argument

• index (u, v) is 1 + number of segments intersected by l(u) before 
hitting v, and is infinity if l(u) does not intersect v

• index(u,v1) = index(u,v2) = 2



Mathy stuff

• Cut(u,v) the event that l(u) cuts v

• Suppose index(u,v) = i

• Cut(u,v) happens only if u occurs before any of u1, u2, …, ui-1, v in the 
random permutation

• Cuv indicator variable for Cut(u,v)

• E[Cuv] = Pr(Cut(u,v)) = 1/(i + 1)



Completing the proof

• Size of the partition is n + number of cuts

• Expected size n + E(Sumuv Cuv)

• Line segment u has at most 2 segments v and w with index(u,v)= i and 
index(u,w) = i

• Bound n + 2nHn



Summary of result

• Binary Space Partition trees are small with random ordering

• This result generalizes to higher dimensions where it is useful for 
hidden surface elimination
• Leads to simple algorithms that perform well

• Use of randomization to defeat the bad case


