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Announcements

• Contact info:
• Richard Anderson,  anderson@cs.washington.edu
• Oscar Sprumont,  osprum@cs.washington.edu

• Office hours (Zoom)
• Richard Anderson, Monday 11 am – noon,  Friday 2 pm – 3 pm
• Oscar Sprumont, Wednesday 11 am – noon,  Friday 11 am – noon

• Edstem Discussion board set up
• https://edstem.org/us/courses/3570/discussion/

• Course readings
• Starting to put of references and links on website (under readings)

mailto:anderson@cs.washington.edu
mailto:osprum@cs.washington.edu
https://edstem.org/us/courses/3570/discussion/


Randomized Algorithms

• Randomization comes up in many different ways in computation

• Illustrate different ways randomization is used by example algorithms
• Algorithmic Techniques + Analysis Techniques
• Demonstrate some incredibly cool idea that are foundational for computing

• K-th largest problem (median problem)
• Randomization to avoid bad case
• Relation between average case and randomized analysis

• Random sampling algorithms (again for the median)



Probability theory

• Basic ideas: 
• Sample space and events

• Random variables

• Expectation: E(X) – average value of X

• Linearity of expectation:  E(X + Y) = E(X) + E(Y)

• Conditional Probability: P(A | B)

• Independence: P(A | B) = P(A)

• Great review videos
• Tim Roughgarden (ex-Stanford), Videos 7.1 and 7.2

• Many other references



Finding the k-th largest

• Given n numbers and an integer k,  find the k-th largest

• If k = n/2 this is computing the median

• Obviously, we can solve this problem by sorting (in time O(n log n)) 
but can we do better

• Quicksort idea, but only one recursive call

• This will still have the same pathological case



QSelect(A, k)

QSelect(A, k){

Choose element x from A

S1 = {y in A | y < x}

S2 = {y in A | y > x}

S3 = {y in A | y = x}

if (|S2| >= k)

return QSelect(S2, k)

else if (|S2| + |S3| >= k)

return x

else

return QSelect(S1, k - |S2| - |S3|)

}

S1 S3 S2



Quick Select

• Same worst case as Quick Sort

• Random pivot will give an O(n) solution (Expected time)

• Deterministic solution (due to BFPRT) not practical

• Exact evaluation of Quick Select recurrence is very difficult



Evaluating Quick Select

• Deterministic recurrence:  T(1) = 1;  T(N) = T(aN) + bN for a < 1

• What is the chance that for a random pivot,  the subproblem is of size 
at most aN (for an appropriate a < 1)



Analysis

• A random pivot reduces the problem to less than ¾ the size with 
probability at least ½

• Recurrence T(n) <= ½ T(3n/4) + ½ T(n) + cn

• Recurrence for expected number of steps

• This recurrence gives an upper bound on the number of steps for 
randomized selection



Selection results

• O(n) expected time median algorithm

• Practical algorithm

• How many comparison to find the median?



Sampling algorithm for finding median

• Two pivot algorithm
• Choose pivot p1, such that p1 is less than the median

• Choose pivot p2, such that p2 is greater than the median

• Identify the elements between p1 and p2

• Find the k-th largest element of S3 where k = n/2 - |S3|

S1 S3 S2

p1 p2



Finding the pivots

• Select a set A of m random values from the input

• Let p1 be the element of rank m/2 + r in A

• Let p2 be the element of rank m/2 – r in A 

• Claim:  if m << n and |S3| << n  then the comparisons are (3/2)n + o(n)

• Choose m = n2/3 and r = n1/3



Breakout session

• Suppose P is a random permutation (on 1..n),  what is the expected 
number of elements k such that P[k] = k

• This could be given with a story line,  such as saying that when 
everyone in an office goes back to work, they are assigned a random 
desk,  what is the number of people that are assigned to their old 
desk

• Discuss as a group, and if you come up with a solution,  make sure all 
group members understand the solution



Randomized Algorithms
• How can random choices be used to make algorithms efficient?

• Suppose you have a minimization problem, where given a solution 
you can easily compute the value of the solution

• Now suppose you have an algorithm, which returns a specific optimal 
solutions with probability p.

• Can you find an optimal solution?  What can go wrong?

S



Mincut problem: Karger’s Algorithm

• Graph problem

• Random result – might be correct

• Given an undirected graph, partition the vertices into two non-empty 
pieces to minimize the edges between the pieces

• Undirected graph with parallel edges

Notes:
Different from the standard mincut problem presented along with Network Flow
The algorithm presented is not very efficient, but can be improved to be faster than any known 
deterministic algorithm for the problem



Minimum Cut Problem

• Given an undirected graph with parallel edges,  find non-empty sets S 
and S’ that minimized the number of edges between S and S’



Edge contraction operation

Observation:  The number of edges in the mincut of G/E is at least as 
great as the number of edges in a mincut of G



Randomized Algorithm









Analysis

• Let C be a min cut (where C is the set of edges between sets of 
vertices S and S’ and |C| = k).  What is the probability that C survives 
the contraction process?

• G has at least kn/2 edges,  otherwise G would have a vertex of degree 
less than k (and consequently a cut of size less than k).

• Probability that the first edge picked is in C is at most k / (nk/2) = 2/n



Conditional Probabilities

Ei: Event of not picking an edge from C on the i-th step

Probability that no edges from C are picked:

p = Prob[E1] Prob[E2 | E1] Prob[E3 |E1 E2] … Prob [En-2 |E1 E2… En-3]

Prob[Ei | E1 E2 . . . Ei-1 ] >= 1 – 2 / (n- i + 1) = (n – i – 1) / (n – i + 1)

p >= (n-2)/ n * (n-3) / (n-1) * (n-4) / (n-2)* . . . * 2/4 * 1/3 = 2 / n(n-1)



Min Cut Result

• Probability that C survives is at least 2 / n(n-1) on one iteration

• If we repeat the algorithm n(n-1) / 2 times we have probability at 
least 1 - 1/e that C has survived at least once

• Mathematical fact:  (1 – 1/k)k < 1/e

• If we run O(n2 log n) iterations, we have the probability of at least 
1 – 1/n of finding a mincut


