

Course Objective

- Introduce a toolkit of modern algorithmic techniques
- Theory of algorithms developed around developing efficient algorithms for a natural class of problems with respect to a standard model of computation (1950s through 1980s)
- Newer work in algorithms focuses on using different models (changing the rules) and bringing in a new set of mathematical tools

Preview of Course Topics

- Distinct from (my) undergraduate courses [see CSE 417/421]
- Work in progress (but drawing on Karlin/Lee CSEP 521)
- Randomized Algorithms and Average Case Analysis
- Randomization is a powerful technique and worst case analysis sometimes misses the point
- Hashing
- Streaming Algorithms
- High dimensional searching
- Linear Algebra Techniques

PMP Course Philosophy

- Students working full time in industry
- Varying backgrounds and length of time from prerequisite courses
- Recorded lectures
- Course website: https://courses.cs.washington.edu/courses/csep521/21wi/
- Office hours, zoom links on website
- RJA: Monday 11am, Friday 2pm
- Oscar: Wednesay 11 am, Friday 11 am
- Aim for relatively uniform workload and clear expectations
- Ability to work independently and figure things out and seek out resources and assistance
- Weekly assignments
- Electronic turn in on gradescope
- Mix of written problems and programming experiments
. Your gic asignment
- We've got to make the best of remote teaching

[^0]
Making the best of Zoom

- Attendance is class sessions strongly encouraged
- Slides will be available before class
- Feel free to ask questions
- Oscar will monitor chat - Useful for clarification questions
- You will need to tolerate some technical glitches - "I think the instructor can't hear us"
- Turning your camera on is optional
- We will use break out rooms for discussion questions
- The course will have office hours, four hours per week

Policies

- Weekly homework assignments, due Tuesdays, 11:59 PM
- Homework posted on the website (HW1 is available)
- Late homework accepted with penalty
- 10% per day

Maximum 50% reduction

- 5 free late days

Homework compeived after will be done at the end of the cours - Homework received after grading has started may not receive feedback - Course grade based on top 9 of 10 assignments

- Collaboration policy
- Its fine to work together (but not required)
- Independent write ups
- Acknowledge collaborators
Models of computation
• Problem: Instance, Solution, Constraints, Value
- Computation Model: Idealized Computer, Unit Cost per Instruction
• Runtime function (for Algorithm A)
• Runtime on instance $\mathrm{I}, \mathrm{T}_{\mathrm{A}}(\mathrm{I})$, number of steps to compute solution to I
• Runtime function, $\mathrm{T}_{\mathrm{A}}(\mathrm{n})$, maximum runtime over all instances of length n

Asymptotic Analysis

- Ignore constant factors
- Constant factors are arbitrary and tedious
- Express run time as $O(f(n))$
- $T(n)$ is $O(f(n)) \quad\left[T: Z^{+} \rightarrow R^{+}\right]$
- If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
- Exist c, n_{0}, such that for $n>n_{0}, T(n)<c f(n)$
- Emphasize algorithms with slower growth rates

Randomized Computation

- Assume a source of random bits
- Compute using the random bits
- Multiple types of results are possible
- Always correct, just the run time varies
- One sided error
- Two sided error
- Amplification of probability of correctness
- Try multiple times

Why randomization

- Actually, lots of reasons
- Foiling an adversary
- Random sampling
- Witnesses
- Fingerprinting
- Hashing
- Re-ordering to avoid bad inputs
- Load balancing
- Convergence in Markov chains
- Symmetry breaking
- The Probabilistic Technique

Breakout Groups!

- I'm going to try to use breakout groups for discussions / problems, but this first one is just a chance to get to know each other. Introduce yourselves!

Generating a random permutation
public static int[] Permutation(int n, Random rand) $\{$
int[] arr = IdentityPermutation(n);
for (int $i=1 ; i<n ; i++$) $\{$
int $j=\operatorname{rand} \operatorname{Next}(0, i+1) ; \quad / /$ Random number in range $0 \ldots$ i
int temp $=\operatorname{arr}[i] ; \quad$ // Swap arr[i], arr[j]
$\operatorname{arr}[\mathrm{i}]=\operatorname{arr}[\mathrm{j}]$;
$\operatorname{arr}[j]=$ temp;
\}
return arr;
\}

Quicksort

$\operatorname{QSort}^{(\mathrm{A})}{ }_{\text {If }}|\mathrm{A}|<=1$ return A
Choose element x from A
$S_{1}=\{y$ in $A \mid y<x\}$
$S_{2}=\{y$ in $A \mid y>x\}$
$S_{3}=\{y$ in $A \mid y=x\}$
return QSort(S1) + S3 + QSort(S2)
\}

Basic QS facts

- Considered one of best sorts in practice with careful implementation
- Usual runtime $O(n \log n)$, Worst case $O\left(n^{2}\right)$
- Sort $\{1,2,3,4,5,6,7,8,9,10,11,12, \ldots, N\}$
- Avoiding the worst case
- Change pivot selection
- Randomly permute before sorting
- Compute average case run time
- Mathematically tractable, but not easy

Finding the k-th largest

- Given n numbers and an integer k, find the k-th largest
- If $k=n / 2$ this is computing the median
- Obviously, we can solve this problem by sorting (in time $O(n \log n)$) but can we do better
- Quicksort idea, but only one recursive call
- This will still have the same pathological case

QSelect(A, k)
$\operatorname{QSelect}(\mathrm{A}, \mathrm{k})\{$
Choose element x from A
$\mathrm{S}_{1}=\{y$ in $A \mid y<x$
$S_{2}=\{y$ in $A \mid y>x\}$
$S_{3}=\{y$ in $A \mid y=x\}$
if $\left(\left|S_{2}\right|>=k\right)$
else if $\left(\left|S_{2}\right|+\left|S_{2}\right|>=k\right)$ retur $\left(S_{2}, k\right)$
else if $\left(\left|S_{2}\right|+\left|S_{3}\right|>=k\right)$
return x
else
return $\operatorname{QSelect}\left(\mathrm{S}_{1}, \mathrm{k}-\left|\mathrm{S}_{2}\right|-\left|\mathrm{S}_{3}\right|\right)$
\}

Evaluating Quick Select

- Deterministic recurrence: $\mathrm{T}(1)=1 ; \mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{aN})+\mathrm{bN}$ for $\mathrm{a}<1$
- Random pivot will give an $O(n)$ solution (Expected time)
- Deterministic solution (due to BFPRT) not practical
- Exact evaluation of Quick Select recurrence is very difficult
- What is the chance that for a random pivot, the subproblem is of size at most aN (for an appropriate a < 1)

Quick Select

- Same worst case as Quick Sort

Analysis

- A random pivot reduces the problem to less then $3 / 4$ the size with probability at least $1 / 2$
- Recurrence $T(n)<=1 / 2 T(3 n / 4)+1 / 2 T(n)+c n$
- Recurrence for expected number of steps
- This recurrence gives an upper bound on the number of steps for randomized selection

Selection results

- $O(n)$ expected time median algorithm
- Practical algorithm
- How many comparison to find the median?

[^0]: - No exams, no course project

