CSEP 521 Applied Algorithms

Richard Anderson

Course Objective

- · Introduce a toolkit of modern algorithmic techniques
- Theory of algorithms developed around developing efficient algorithms for a natural class of problems with respect to a standard model of computation (1950s through 1980s)
- · Newer work in algorithms focuses on using different models (changing the rules) and bringing in a new set of mathematical tools

My background

- PhD, Stanford (1985)
 - Thesis: The Complexity of Parallel Algorithms
- Post Doc (1985-86)
 Mathematical Science Research Institute, Berkeley
- University of Washington (since
 - Broad range of work: Algorithms, Software Engineering, Educational Technology, Computing for Development

- Indian Institute of Science, Bangalore
- Parallel Algorithms
- Sabbatical 2001-2002
- Microsoft Research, Redmond
 - Learning Science and Technology
- Sabbatical 2008-2009
 - PATH, Seattle
 - Digital solutions for global health

Research

Preview of Course Topics

- Distinct from (my) undergraduate courses [see CSE 417/421]
- Work in progress (but drawing on Karlin/Lee CSEP 521)
- · Randomized Algorithms and Average Case Analysis
 - Randomization is a powerful technique and worst case analysis sometimes misses the point
- Hashing
- Streaming Algorithms
- · High dimensional searching
- · Linear Algebra Techniques

PMP Course Philosophy

- · Students working full time in industry
- · Varying backgrounds and length of time from prerequisite courses
- Interests in both relevance and broadening
- · Aim for relatively uniform workload and clear expectations
- · Ability to work independently and figure things out and seek out resources and assistance
- · We've got to make the best of remote teaching

Course mechanics

- Zoom
- · Recorded lectures
- Course website: https://courses.cs.washington.edu/courses/csep521/21wi/
- Office hours, zoom links on website
 RJA: Monday 11am, Friday 2pm
 Oscar: Wednesay 11 am, Friday 11 am

- Homework Assignments
 Weekly assignments
 Weekly assignments
 Electronic turn in on gradescope
 Mix of written problems and programming experiments
 Programming assignments
 Your choice of language (Java, CR, Python) and environment
- No exams, no course project

1

Making the best of Zoom

- · Attendance is class sessions strongly encouraged
- Slides will be available before class
- · Feel free to ask questions
- · Oscar will monitor chat
 - · Useful for clarification questions
- You will need to tolerate some technical glitches
 - "I think the instructor can't hear us"
- Turning your camera on is optional
- We will use break out rooms for discussion questions
- The course will have office hours, four hours per week

Policies

- Weekly homework assignments, due Tuesdays, 11:59 PM
- Weekly nomework assignments, due Iuesdays, 11:59 PM

 + Homework posted on the website (HWI is available)

 Late homework accepted with penalty

 10% per day

 Maximum 50% reduction

 5 free late days

 Late day computation will be done at the end of the course

 + Homework received after grading has started may not receive feedback

 Course grade based on top 9 of 10 assignments
- Collaboration policy
- Its fine to work together (but not required)
 Independent write ups
 Acknowledge collaborators

Models of computation

- Problem: Instance, Solution, Constraints, Value
- Computation Model: Idealized Computer, Unit Cost per Instruction
- Runtime function (for Algorithm A)
 - Runtime on instance I, $T_A(I)$, number of steps to compute solution to I
 - \bullet Runtime function, $\,T_{\!_{A}}\!(n),\,$ maximum runtime over all instances of length n

Asymptotic Analysis

- · Ignore constant factors
 - · Constant factors are arbitrary and tedious
- Express run time as O(f(n))
- T(n) is O(f(n)) $[T:Z^+ \rightarrow R^+]$
 - If n is sufficiently large, T(n) is bounded by a constant multiple of f(n)
 - Exist c, n_0 , such that for $n > n_0$, T(n) < c f(n)
- Emphasize algorithms with slower growth rates

Randomized Computation

- Assume a source of random bits
- Compute using the random bits
- Multiple types of results are possible
 - Always correct, just the run time varies
 - One sided error
 - Two sided error
- · Amplification of probability of correctness
 - Try multiple times

Why randomization

- Actually, lots of reasons
 Foiling an adversary

 - Random sampling Witnesses
 - Fingerprinting
 - Hashing

 - Re-ordering to avoid bad inputs
 Load balancing
 Convergence in Markov chains
 - Symmetry breakingThe Probabilistic Technique

Breakout Groups!

 I'm going to try to use breakout groups for discussions / problems, but this first one is just a chance to get to know each other. Introduce yourselves!

1/5/2021

CSEP 521

Generating a random permutation

- Permutation: Bijection from [1..n] to [1..n]
 [2, 5, 8, 1, 10, 3, 4, 7, 6, 9]
- n! permutations on [1..n]
- Random permutation generate permutations with each having probability of exactly 1/n!

ti CS

Generating a random permutation

```
public static int[] Permutation(int n, Random rand) {
  int[] arr = IdentityPermutation(n);

for (int i = 1; i < n; i++) {
    int j = rand.Next(0, i + 1);
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
  }
  return arr;
}</pre>
```

Correctness proof

- Invariant: $arr[0] \dots arr[i]$ is a random permutation of $0 \dots i$ at the end of the loop
- Base case: i = 0
- Induction: Suppose arr[0] ... arr[i-1] is a random permutation of 0..i-1 at the start of the loop

Let P be a permutation on i+1 elements, show Prob[P] = 1/(i+1)! at end of loop Suppose P[i] = x and P[j] = i P is created from P' (on i elements), by moving x from location j to location i Prob[Swapping <math>i and j] = 1/(i+1) Prob[P] = 1/1. By the induction hypothesis P Hence P is the P induction P is P induction P induction P induction P induction P is P induction P indu

2021 CSEP

Quicksort

```
\begin{split} & \text{QSort}(A) \{ & \quad \text{if } |A| <= 1 \text{ return A} \\ & \quad \text{Choose element x from A} \\ & S_i = [y \text{ in A} \mid y < x] \\ & S_i = [y \text{ in A} \mid y > x] \\ & S_i = [y \text{ in A} \mid y > x] \\ & \text{return QSort}(S1) + S3 + QSort(S2) \\ \} \end{split}
```

S₁ S₃ S₂

Basic QS facts

- Considered one of best sorts in practice with careful implementation
- Usual runtime O(n log n), Worst case O(n^2)
- Sort {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . ., N}
- · Avoiding the worst case
 - Change pivot selection
 - Randomly permute before sorting
- Compute average case run time
- Mathematically tractable, but not easy

021 CSEP 521

Finding the k-th largest

- Given n numbers and an integer k, find the k-th largest
- If k = n/2 this is computing the median
- Obviously, we can solve this problem by sorting (in time O(n log n)) but can we do better
- Quicksort idea, but only one recursive call
- This will still have the same pathological case

1/5/202

CSEP 521

$Qselect(A, k) \\ Qselect(A, k) (\\ Choose element x from A \\ S_1 = \{y \text{ in } A \mid y \times x\} \\ S_2 = \{y \text{ in } A \mid y \times x\} \\ S_3 = \{y \text{ in } A \mid y \times x\} \\ \text{if } (|S_2| > = k) \\ \text{return } Qselect(S_2, k) \\ \text{else if } (|S_2| + |S_3| > k) \\ \text{return } x \\ \text{else} \\ \text{return } Qselect(S_1, k \cdot |S_2| \cdot |S_3|) \\ \}$

Quick Select

- Same worst case as Quick Sort
- Random pivot will give an O(n) solution (Expected time)
- Deterministic solution (due to BFPRT) not practical
- Exact evaluation of Quick Select recurrence is very difficult

1/5/202

CSEP 521

Evaluating Quick Select

- Deterministic recurrence: T(1) = 1; T(N) = T(aN) + bN for a < 1
- What is the chance that for a random pivot, the subproblem is of size at most aN (for an appropriate a < 1)

1/5/2021

CSEP 521

Analysis

- A random pivot reduces the problem to less then % the size with probability at least %
- Recurrence $T(n) \le \frac{1}{2} T(3n/4) + \frac{1}{2} T(n) + cn$
- Recurrence for expected number of steps
- This recurrence gives an upper bound on the number of steps for randomized selection

1/5/2021

CSEP 521

Selection results

- O(n) expected time median algorithm
- Practical algorithm
- How many comparison to find the median?

1/5/2021

CSEP 521