
University of Washington February 16, 2021
Department of Computer Science and Engineering
CSEP 521, Winter 2021

Homework 7, Due Thursday, February 25, 2021

Problem 1 (10 points):

Argue that it is impossible to construct a 20-bit binary code with 5000 code words that can correct
two errors.

Problem 2 (15 points):

Consider the following set of points with the given coordinates: S = {(0, 2), (1, 0), (1, 4), (3, 3), (4, 2)}.
Draw the Voronoi diagrams for the set of points using the L2 norm, the L1 norm, and the L∞ norms.
You should draw the diagrams on paper, by hand. While these will not be graded on perfect accu-
racy, you should aim to have relatively neat diagrams, instead of free hand sketches. (Graph paper
and a straight edge is recommended.) The key to the L1 and L∞ cases is to understand what the
set of points that are equidistant from points p1 and p2 looks like under these two metrics. Start
out by building the the Voronoi diagrams for {(0, 2), (1, 0)}.

•(1,4)

•(0,2)

•(1,0)

•(3,3)

•(4,2)

a) Draw the Voronoi diagram for the point set S = {(0, 2), (1, 0), (1, 4), (3, 3), (4, 2)} under the
L2 norm, Euclidean distance. For points p1 = (x1, y1) and p2 = (x2, y2),

d2(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2.

b) Draw the Voronoi diagram for the point set S = {(0, 2), (1, 0), (1, 4), (3, 3), (4, 2)} under the
L1 norm, Manhattan distance. For points p1 = (x1, y1) and p2 = (x2, y2),

d1(p1, p2) = |x1 − x2|+ |y1 − y2|.

c) Draw the Voronoi diagram for the point set S = {(0, 2), (1, 0), (1, 4), (3, 3), (4, 2)} under the
L∞ norm. For points p1 = (x1, y1) and p2 = (x2, y2),

d∞(p1, p2) = max(|x1 − x2|, |y1 − y2|).

Programming Problem 3 (10 points):

Implement a quad tree data structure. The version of the quad tree we will consider has a square
associated with each node, and the four children of a node correspond to a split of the square into
quadrants defined by the central point. The quad tree should subdivide the point set until there is
at most one point in a region. The depth of the leaves of a tree will vary, based on the distribution
of points.

For your implementation, you should generate test data of n random points in the unit square, so the
region at the top level should be the square with corners {(0.0, 0.0), (1.0, 0.0), (0.0, 1.0), (1.0, 1.0)}.
You should use floating point numbers for coordinates.

For results, the most convenient format would be to draw the quad tree partition and point set
for a few sample input sizes, maybe one quite small (n = 10), and a larger one, n = 200. For
submitting results, there is no need for large plots. If you decide not to draw this - generate some
statistics of the trees, such as the number of nodes at each level.

There is obviously lots of quad-tree code in the wild - the expectation is that you use references to
understand the algorithm, and then write the algorithmic code yourself. You can, of course, use
libraries and other code for things like the graphics component.

Programming Problem 4 (10 points):

Implement the nearest neighbor search using the quad tree structure from the previous problem.
You should generate a random set of points, and then determine which of these points is closest to
the query point. Your search algorithm should be a tree based search that runs in time proportional
to the depth of the tree.

For submitting results, you can either generate program traces to show which comparisons are done
to determine the nearest neighbor, or augment the visualization from problem 3, to show the query
point and its nearest neighbor. For problem 4, you can just give the code for your search method
separately.

