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¡ In many data mining situations, we do not 
know the entire data set in advance

¡ Stream Management is important when the 
input rate is controlled externally:
§ Google queries
§ Twitter or Facebook status updates

¡ We can think of the data as infinite and 
non-stationary (the distribution changes 
over time)
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¡ Input elements enter at a rapid rate, 
at one or more input ports (i.e., streams)
§ We call elements of the stream tuples

¡ The system cannot store the entire stream 
accessibly

¡ Q: How do you make critical calculations 
about the stream using a limited amount of 
(secondary) memory?
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§ Sensor data
§ E.g.,millions of temperature sensors deployed in the 

ocean
§ Image data from satellites, or even from 

surveillance cameras
§ E.g., London

§ Internet and Web traffic
§ Millions of streams of IP packets

§ Web data
§ Search queries to Google, clicks on Bing, etc.
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¡ Types of queries one wants on answer on 
a data stream: 
§ Filtering a data stream

§ Select elements with property x from the stream
§ Counting distinct elements

§ Number of distinct elements in the last n elements 
of the stream

§ Estimating moments
§ Estimate avg./std. dev. of last n elements

§ Finding frequent elements
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¡ Mining query streams
§ Google wants to know what queries are 

more frequent today than yesterday

¡ Mining click streams
§ Yahoo wants to know which of its pages are 

getting an unusual number of hits in the past hour

¡ Mining social network news feeds
§ E.g., look for trending topics on Twitter, Facebook
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¡ Sensor Networks 
§ Many sensors feeding into a central controller

¡ IP packets monitored at a switch
§ Gather information for optimal routing
§ Detect denial-of-service attacks
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¡ Input: sequence of T elements a1, a2, … aT
from a known universe U, where |U|=u.

Goal: perform a computation on the input, in  
single left to right pass using

¡ Process elements in real time
¡ Can’t store the full data => minimal storage 

requirement to maintain working “summary”.
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Some functions are easy: min, max, sum,  …
We use a single register !, simple update: 
¡ Maximum: Initialize ! ← 0   

For element # ,  ! ← max !, #
¡ Sum: Initialize ! ← 0   

For element # ,  ! ← ! + #

32, 112, 14, 9, 37, 83, 115, 2,



Some applications:
¡ Determining popular products
¡ Computing frequent search queries
¡ Identifying heavy TCP flows
¡ Identifying volatile stocks

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4,



¡ Want to compute the number of distinct keys 
in the stream

¡ How can you do this without storing all the 
elements?

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,



Applications:

§ IP Packet streams: Number of distinct  IP addresses or 
IP flows (source+destination IP, port, protocol)
§ Anomaly detection, traffic monitoring

§ Search:  Find how many distinct search queries were 
issued to a search engine (on a certain topic) yesterday

§ Web services:  How many distinct users (cookies) 
searched/browsed a certain term/item
§ advertising, marketing, trends

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,



¡ Cool applications of probability (and hashing)

¡ Can compute interesting global properties of 
a long stream, with only one pass over the 
data, while maintaining only a small amount 
of information about it. We call this small 
amount of information a sketch


