Bloom Filters

Given a set \(S = \{x_1, x_2, x_3, \ldots, x_n\} \) on a universe \(U \), want to answer queries of the form:

\[Is \ y \in S? \]

Bloom filter provides an answer in

- “Constant” time (to hash).
- Very small amount of space.
- But with small probability of a false positive
 - Particularly useful when the answer is usually NO
 - When care a lot about space.
Bloom Filters

Start with an m bit array, filled with 0s.

$$B = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Insertion: Hash each item x_j in S k times. If $h_i(x_j) = a$, set $B[a] = 1$.

$$B = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

- n items
- $m = cn$ bits
- k hash functions h_1, h_2, \ldots, h_k
- $c = q$
Bloom Filters

Lookup: To check if \(y \) is in \(S \), check \(B \) at \(h_i(y) \). All \(k \) values must be 1.

Possible to have false positive; all \(k \) values are 1, but \(y \) is not in \(S \).

\(n \) items \hspace{1cm} m = cn \) bits \hspace{1cm} \(k \) hash functions
Estimate False Positive Probability

\[n \text{ items} \quad m = cn \text{ bits} \quad k \text{ hash functions} \]

Assume hash functions completely random \(\text{is } y \in S? \)

Inserted elements \(S = \{x_1, x_2, \ldots, x_n\} \) into table.

Lookup \((y)\) \(y \notin S \)

\[
\Pr(\text{false positive}) = \Pr(h_1(y) = h_2(y) = \cdots = h_k(y) = 1)
\]

\[
\Pr(\text{specific bit in table is 0}) = \left(\frac{m-1}{m}\right)^{kn} = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}
\]

\[
1 - \frac{1}{m} \approx e^{-\frac{1}{m}}
\]

\[
1 - x \approx e^{-x}
\]

\[
x \text{ very close to 0.}
\]

Let \(\beta \) denote the fraction of bits that are set to 0. \(\approx \Pr(\text{specific bit is 0}) \)

\[
\Pr(\text{false positive}) = (1-\beta)^k \approx (1-e^{-\frac{1}{m}})^k
\]

Expected \# of bits that are 0 \(= m \cdot \Pr(\text{specific bit is 0}) \)

false positive is when we say that an elt is in the set when in fact it was never inserted.
Estimate False Positive Probability

- \(\Pr(\text{specific bit of filter is 0}) \) is
 \[p' \equiv (1 - 1/m)^{kn} \approx e^{-kn/m} \equiv p \quad (p' \leq p) \]

- If \(\beta \) is fraction of 0 bits in the filter then false positive probability for a new element is
 \[(1 - \beta)^k \approx (1 - p')^k \approx (1 - p')^k = (1 - e^{-kn/m})^k \]

- Find optimal at \(k = (\ln 2) \frac{m}{n} \) by calculus.
 - So optimal false positive prob is about \((0.6185)^{m/n} \)

\[n \text{ items} \quad m = cn \text{ bits} \quad k \text{ hash functions} \]
Graph of \((1-e^{-k/c})^k\) for \(c=8\)

\[\frac{m}{n} = 8\]

Optimal \(k = 8 \ln 2 = 5.45\ldots\)

\(n\) items, \(m = cn\) bits, \(k\) hash functions
Applications

- Original (40 years ago) use:
 - Spellcheckers (false positive = misspelled word)
 - Forbidden passwords (false positive = no biggie)
Applications – More modern

- In databases:
 - Join: combine two tables with a common domain into a single table
 - Semi-join: a join in distributed databases in which only the joining attribute from one site is transmitted to other and used for selection. The selected records sent back
 - Bloom-join: a semi-join where we send only a Bloom filter of the joining attribute
Applications - modern

- Monitor all traffic going through a router, checking for signatures of bad behavior (e.g. strings associated to worms, viruses)
- Must be fast and simple - operate at hardware/line speed.
- Use a Bloom filter for signatures.
- On positive: send off to analyzer for action
 - False positive = extra work on slow path.
Handling Deletions

- Bloom filters can handle insertions, but not deletions.

- If deleting x_i means resetting 1’s to 0’s, then deleting x_i will “delete” x_j.

```
0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0
```
Bloom filter numerous variations and applications

- See papers on website.

```
```

```
The Bloom Filter principle: wherever a list or set is used, and space is at a premium, consider using a Bloom filter if the effect of false positives can be mitigated."
```