Last time

- short reviews from probability
 - variance & tail bounds
 - Gaussians & CLT
- Distinct sets
- Similarity search & dimension reduction

Today

Locality sensitive hashing (LSH)
⇒ efficient approx. similarity search

Similarity search, NNS

large collection of data items
- \(x^{(1)}, x^{(2)}, \ldots, x^{(n)} \in \mathbb{R}^k \)
- notion of distance (or equivalently similarity)
 \(d^*(x, y) = \text{dist between } x \text{ & } y \)

2 problems:

1) Find all pairs \(i, j \) s.t.
 \[d(x^{(i)}, x^{(j)}) \leq r \]

 Naive:
 \(O(n^2k) \)

2) Preprocess database \(\mathcal{D} \)
 from efficiently respond to queries
 \(\text{query } q \in \mathbb{R}^k \)
 return all pts in \(\mathcal{D} \) s.t.
 \[d(q, x^{(i)}) \leq r \]

 \(O(nk) / \text{query} \)

If \(k \) small, say \(\leq 15 \), there are
space partitioning data structures that are reasonably efficient
- \(k \)-d trees
curse of dimensionality.
LSH (c-approx r-nearest neighbors problem)

Think $c=2$, $c > 1$

Given query pt q, return
- all pts $x^{(i)}$ s.t.

 $$d(x^{(i)}; q) \leq r$$

 (w.h.p.)
- may return some pts $x^{(i)}$

 s.t.

 $$d(x^{(i)}; q) \leq c \cdot r$$

Primitives

X: family of hash funs that map pts $\in \mathbb{R}^k \rightarrow$

X is (r, cr, p_1, p_2)-sensitive if $\forall x, y \in \mathbb{R}^k$

If $d(x, y) \leq r$ \implies $\Pr_{h \in X} (h(x) = h(y)) \geq p_1$

If $d(x, y) \geq cr$ \implies $\Pr_{h \in X} (h(x) = h(y)) \leq p_2$

$p_2 < p_1$

Example: Suppose pts $e \{0, 1\}^k$

$\{0, 1\}^k \rightarrow \{0, 1\}^k$

$X = \{h(x) = x_i \mid 1 \leq i \leq k\}$

$d(x, y) \leq r$

$p_1 = \Pr(h(x) = h(y)) \geq 1 - \frac{c \cdot r}{k} \approx e$

$x = x_1, x_2 \ldots x_k$

$y = y_1, y_2 \ldots y_k$

$d(x, y) > cr$

$p_2 = \Pr(h(x) = h(y)) \leq 1 - \frac{c \cdot r}{k}$

$e^{-\frac{c \cdot r}{k}}$

$(r, cr, \frac{1}{k}, 1 - \frac{c \cdot r}{k})$

family of hash funs.
Combine these hash fins to amplify difference between p, & q:

\[h(x) = [h_1(x), h_2(x), \ldots, h_n(x)] \]

Purpose: reduce chance that pts that are far away map to some value.

Amplify \(g(y) \) \(\Delta(0,y) \geq \epsilon \) \(p \leq d \)

\[g_1(x) = [h_1(x), h_2(x), \ldots, h_n(x)] \]
\[g_2(x) = [h_1(x), h_2(x), \ldots, h_n(x)] \]
\[g_3(x) = [h_1(x), h_2(x), \ldots, h_n(x)] \]

1. \(q(x) \) \(\Delta(q,y) \geq \epsilon \)
2. \(\Pr(g(qp)=g(y)) \leq p \)
3. \(S_q = \{ x \mid g_3(x)=q(x), 0 \leq x < \epsilon \} \)
4. \(d(q,y) \) \(\forall x \in S_q \) compute all of those that have \(d(q,y) \leq r \)

\[d(x,y) \leq r \]
\[\Pr(x \notin S_q) = \frac{(Pr(Y \notin S_q))^t}{1 - Pr(Y \notin S_q)} \]
\[\leq (1 - p)^t = e^{-pt^t} \]

\[d = \frac{\log n}{\log(1/p^t)} \]

Where we are:

- **Preprocessing time:** \(n \cdot d \) hash fn computation
- **Space:** \(n \cdot d + \text{actual pts} \)
- **Exp time to process query:**
 \[ld (\text{hash fn computation}) + E(\# \text{far pts in question}) \]
 \[\leq l \cdot n \cdot p \]
- **Prob miss a close pt** \(\Rightarrow \)
 \((1 - p^t)^t \)

\(X \) is \((r, \epsilon, p, q) \)-sample of \(\forall x \geq \epsilon \) \(k \)

- If \(d(x,y) < r \) \(\Rightarrow \) \(\Pr_{i=1}^k (h_i(x), h_i(y)) = p_i \)
- If \(d(x,y) > r \) \(\Rightarrow \) \(\Pr_{i=1}^k (h_i(x), h_i(y)) = p_{i-1} \)

- **dist fn.
 - Start w/ \(r \)
 - get \(X \) \((r, \epsilon, p, q) \)
 - need to select
 - \(\epsilon \)
 - \(d \)

\[\text{set } n_{\text{bad pt}}^d = 1 \]

\[e \leq 1 \text{ bad pt per table} \]

\[\frac{d}{\log(1/p^t)} \]

\[\Pr(\text{missing close pt}) = \frac{1}{2} \]

\[p^t \cdot e = 1 \]

\[\Rightarrow \]

\[l = n^d \]

\[l = n \]
Where we are:
- Preprocessing time: $n \cdot l \cdot d$ hash fn computing
- Space: $n \cdot d +$ actual pts
- Exp time to process query:
 \[
 l d (\text{hash fn computing}) + E(\# \text{far pts that are in } S_g)
 \leq l \cdot n \cdot d^2.
 \]
- Prob miss a close pt:
 \[
 \Rightarrow (1 - p_i^d)^k.
 \]

\[
\frac{\log \left(\frac{1}{p_i} \right)}{\log \left(\frac{1}{p_2} \right)} = \delta
\]

\[
\left\{ \begin{array}{ll}
p_i = \frac{1}{4} & \text{if } \frac{\sqrt{n}}{4} \leq \alpha \\
p_i = \frac{1}{2} & \text{if } \frac{\sqrt{n}}{2} \leq \alpha \\
\end{array} \right.
\]

\[l = n \]

\[
\frac{n^g}{\log \left(\frac{n^g}{\log \left(\frac{n^g}{n^g + \rho} \right)} \right)}
\]

\[
\frac{n^g}{\log \left(\frac{1}{\rho} \right)} + n^g
\]

\[
\frac{\alpha}{\epsilon}.
\]

\[
\text{Cosine similarity}
\]

\[
\left(x^{(1)}, \ldots, x^{(m)} \right) \in \mathbb{R}^k
\]

\[
\text{similar (close) if } \frac{6 \leq 0.1}{\theta \geq 0.2} \leq \frac{\theta}{\epsilon}
\]

\[
\left(L = \left\{ h(x) = \text{sign}(r \cdot x) \right\} \right.
\]

\[
h : \mathbb{R}^k \rightarrow \{0, 1\}
\]

\[
\text{sign}(r \cdot x) = \left\{ \begin{array}{ll}
1 & \text{if } r \cdot x > 0 \\
0 & \text{if } r \cdot x < 0
\end{array} \right.
\]

\[
\theta = \frac{\epsilon}{\alpha}
\]

\[
r \cdot x = \| r \| \cdot \| x \| \cos \theta
\]

\[
\text{cos }\theta
\]
Jaccard Similarity
\[J(x, y) = \frac{\sum_{i=1}^{n} \min(x_i, y_i)}{\sum_{i=1}^{n} \max(x_i, y_i)} \]
\[= \frac{\text{intersection}}{\text{union}} \]

\[x = (x_1, \ldots, x_k) \]
\[y = (y_1, \ldots, y_k) \]
\[x_i = \begin{cases} \# \text{occurrence} \text{ of } i \text{ in } x & \text{if } i \text{ is in both } x \text{ and } y \\ 0 & \text{o.w.} \end{cases} \]

\[x = (1, 2, 3, 4, 5, 6, 7) \]
\[y = (0, 1, 0, 0, 1, 0) \]
\[\Pi = \{1, 2, 4, 7\} \]
\[h_{\Pi}(x) = (0, 1) \]
\[h_{\Pi}(y) = (1, 0) \]
\[\text{Pr}(h_{\Pi}(x) = h_{\Pi}(y)) = \frac{|\Pi|}{|A \cup B|} \]

\[\Pi' = \{1, 2, 4\} \]
\[h_{\Pi'}(x) = 4 \]