Today

- bipartite matching proof
- intro hashing
- universal hashing

Takeaways:

- often make decisions with incomplete info.
 - competitive analysis gives us a way to bound cost of not knowing future
 - competitive ratio is a worst-case notion but online algorithms with
 best possible competitive ratio often work much better in practice

- "ascending auction" alg for matching (or selling goods to buyers)

Today we will prove that this very natural, simple alg probably has very nice properties.
Maximum Weight Matching

bipartite graphs

matching: subset of edges with no common endpoints

match is perfect if all vertices are incident to an edge in matching

Algorithmic problem:

find a maximum weight matching in a weighted $m \times n$ bipartite graph.

\[\begin{array}{ccc}
1 & 2 & 3 \\
\hline
4 & 5 & 6 \\
\end{array}\]

assume weights w_{ij} are integers

Fix bid increment $\delta = \frac{1}{m+n}$

Maintain price vector (p_1, \ldots, p_n)

Initially all prices $p_j = 0$ and matching is empty $M(i) = \emptyset$

As long as some bidder is not matched

pick unmatched bidder i

consider $D(i) = \{ j \mid v_{ij} \geq p_j \}$

Pick some $j \in D(i)$

If j unmatched, say $M(i) = j$

else, say $M(i) = \emptyset$, $M(j) = \emptyset$, $M(i) = j$

increase p_j by δ.
Theorem: Suppose run this alg on \(M \) complete bipartite graph with integer weights. Then the alg terminates with a perfect max weight matching \(M \) and the prices are almost "envy-free" i.e.

\[
M(i) = j \implies v_{ij} - p_i > v_{ik} - p_k > -5w_k
\]

Proof:

Observations:
- From the moment an item is matched, it stays matched until item \(j \) is matched, \(p_j = 0 \)
- if bidder \(i \) is unmatched, then \(D_i(G) \neq \emptyset \)
- every step \(\Delta(\Sigma p_i) = 5 \)
- \(p_k \leq \max_v V_k + 5 \)
- \(\implies \) all bidders are matched at end.

When we terminate property (a) holds.

Suppose that \(M^{\textrm{opt}} \) is an optimal

\[\sum_i v_i \cdot m_i(i) \geq \sum_i v_i \cdot m_i(i) - 5 \cong \sum_i v_i \cdot m_i(i) - 5 \]

Now we will show

\[\sum_i v_i \cdot m_i(i) - p_i(i) \geq \sum_i (v_i \cdot m_i(i) - 5) \]

\[\sum_i v_i \cdot m_i(i) \geq \sum_i (v_i \cdot m_i(i) - 5) \]

\[\delta = \frac{1}{n} \sum_i v_i \cdot m_i(i) - \frac{n}{n} \]

\[\delta = \frac{1}{n} v_i \cdot m_i(i) - \frac{n}{n} \]

\[\delta = \frac{1}{n} v_i \cdot m_i(i) - \frac{n}{n} \]

unhappy a bidder had for an item

\[v_{ij} - p_i \geq v_{ij} - p_j \]

OPT \(
\)
\[p_i = c + \delta \]
\[v_{ij} \]
\[\max_{i,j} v_{ij} + 5 \]
\[c \]

\[n = \# \text{bidders} = \# \text{dems} \]
\[\max(\# \text{bidders}, \# \text{dems}) \]

\[c = 1 \]
\[s = \frac{1}{n} \]

\[\text{running \ } O(n^2) \]

\[n = 2 \]
\[\delta = \frac{1}{3} \]
Hashing

One of the most important ways to implement:
- dictionary data structure
- load balancing
- numerous applications in algorithms, complexity, and crypto

Dictionary

U = universe of possible keys
e.g. \{0, ..., 2\^n-1\}

Operations:
- Insert(k) - add key k to set
- Find(k) - is k in set?
- Delete(k) - delete k from set

Want to store set S of keys from U

ideally like to use space \(O(|S|) \)

\(|S| = n \)

\[h(k) \]

\[m \]

collisions: when two keys hash to same location

Time for Find(k) = # keys that hash to \(h(k) \)

can be linear in worst case

Desiderata

- # sets in each bucket is small, ideally \(O(1) \)
- \(m = O(|S|) \)
- efficient to store & compute \(h(\cdot) \)

Start by assuming that \(h \) is completely random.

\[\mathcal{N} = \text{set of all mappings} \]

\[|\mathcal{N}| = m^n \]

\[\Pr(\text{any particular mapping}) = \frac{1}{m^n} \]

Find(x)

T: # els stored at location \(h(x) \)

if \(x = y \):
Define \(H \) a family of hash functions (each \(h \in H \) \(h: U \rightarrow \{0,1\}^m \)) such that

\[
\Pr(h(x) = h(y)) \leq \frac{1}{m}
\]

for a random choice of \(h \in H \).

If we have universal family of hash functions, we pick \(h \) UK

\[|U| = 2^u \quad m = 2^k \]

\[u = 12.8 \quad k = 10 \]

\(H = \{ h_A(x) = A x \mod 2 \mid A \in \{0,1\}^{k \times u} \} \)
\[h_A = A \times \text{mod} 2 \]

pick one \(A \) at random

\[h_{A'} \]

Thm

If \(h \) is selected at random from this family

(A is random \(k \times n \) matrix
glove)

then \(\forall x \neq y \in U \)

\[Pr(h_A(x) = h_A(y)) = \frac{1}{m} \]

\[\mathcal{X} = \{ h_{A(x)} = A \times \text{mod} 2 \mid A \in \{0, 1\}^{k \times n} \} \]

\(h_A : U \rightarrow [m] \)

\[|U| = 2^n \quad m = 2^k \]

Claim: universal

Suppose \(x \neq y \)

\[Pr(Ax = Ay) = Pr(A(x-y) \text{mod} 2 = 0) = \frac{1}{2^k} \frac{1}{m} \]

\[z \neq 0 \quad \text{(because } x \neq y) \]

\[z = (z_1, \ldots, z_n) \]
\[
\begin{align*}
\text{at least one } z_i = 1 \implies z = i \\
\Pr(\ c_i+a_i=0 \mod 2) &= \frac{1}{2^k} \\
\Pr(\ (c_i+a_i) \mod 2 = 0) &= \frac{1}{2} \\
\end{align*}
\]