CSEP 521 Applied Algorithms

Richard Anderson Lecture 8 Network Flow

Announcements

- Reading for this week
 - 6.8, 7.1, 7.2 [7.3-7.4 will not be covered]

 - Next week: 7.5-7.12 Metwork Flow
- Final exam, March 18, 6:30 pm. At UW.
 - 2 hours
 - In class (CSE 303 / CSE 305)
 - Comprehensive
 - 67% post midterm, 33% pre midterm

Bellman-Ford Shortest Paths Algorithm

- Computes shortest paths from a starting vertex
- Allows negative cost edges
 - Negative cost cycles identified
- · Runtime O(nm) Dijkston O(mlogal
- Easy to code

Bellman Ford Algorithm, Version 2

foreach w

M[0, w] = infinity;

 $M[0, \vee] = 0;$

for i = 1 to n-1

foreach w

 $M[i, w] = \min(M[i-1, w], \min_{x}(M[i-1,x] + cost[x,w]))$

Bellman Ford Algorithm, Version 3

```
foreach w
M[w] = infinity;
M[v] = 0;
for i = 1 to n-1
foreach w
M[w] = min(M[w], min_x(M[x] + cost[x,w]))
```

Bellman Ford Example

Algorithm 2					
i	V ₁	V ₂	V ₃	V ₄	
0	0	00	8	90	
1	0	2	10	L	
2	0	2	24	-1	
3	0	2	0	-1	

Algorithm 3					
i	V ₁	V ₂	V ₃	V ₄	
0	0	00	90	8	
1	0	2	4	-1	
2	0	2	0	-1	
3					

Finding the longest path in a graph

Negate Weight

Short Path's.

Negate Auswer

Foreign Exchange Arbitrage

	USD	EUR	CAD
USD		0.8	1.2
EUR	1.2		1.6
CAD	0.8	0.6	

Cycle product>1

Network Flow

Outline

- Network flow definitionsFlow examples

 - Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm

 - Maxflow-MinCut Theorem

Network Flow Definitions

- Capacity
- Source, Sink في الح
- Capacity Condition
- Conservation Condition

Value of a flow

Flow Example

Flow assignment and the residual graph

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - /- 0 <= f(e) <= c(e)
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

Flow Example

Find a maximum flow

Value of flow:

Find a maximum flow

Augmenting Path Algorithm

- Augmenting path
 - Vertices v₁, v₂, ..., v_k
 - $v_1 = s$, $v_k = t$
 - Possible to add b units of flow between v_j and v_{j+1} for j = 1 ... k-1

Find two augmenting paths

Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - G_R: edge e' from u to v with capacity c f
 - G_R: edge e" from v to u with capacity f

Residual Graph

s, v, u, t

Augmenting Path Lemma

- Let P = v₁, v₂, ..., v_k be a path from s to t with minimum capacity b in the residual graph.
- b units of flow can be added along the path P in the flow graph.

Proof

- Add b units of flow along the path P
- What do we need to verify to show we have a valid flow after we do this?

back would colse 80 t > 0

Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph G_R

Find an s-t path P in G_R with capacity b > 0

Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
 - Sum of flows out of S minus sum of flows into S

Flow(S,T) <= Cap(S,T)

What is Cap(S,T) and Flow(S,T)

 $S=\{s, a, b, e, h\}, T=\{c, f, i, d, g, t\}$

Find a minimum value cut
$$cap(s, \tau) \ge \frac{1}{5} \log(s, \tau)$$

$$cap(s, \tau) = \frac{1}{5} \log(s, \tau)$$

MaxFlow - MinCut Theorem

- Let S, T be a cut, and F a flow
 - Cap(S,T) >= Flow(S,T)
- If Cap(S,T) = Flow(S,T)
 - S, T must be a minimum cut
 - F must be a maximum flow
- The amazing Ford-Fulkerson theorem shows that there is always a cut that matches a flow, and also shows how their algorithm finds the flow

MaxFlow - MinCut Theorem

- There exists a flow which has the same value of the minimum cut
- Proof: Consider a flow where the residual graph has no s-t path with positive capacity
- Let S be the set of vertices in G_R reachable from s with paths of positive capacity

Let S be the set of vertices in G_R reachable from s with paths of positive capacity

What can we say about the flows and capacity between u and v?

Max Flow - Min Cut Theorem

 Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.

 If we want to find a minimum cut, we begin by looking for a maximum flow.

Performance

2000 Augmentutus

 The worst case performance of the Ford-Fulkerson algorithm is horrible

Better methods of finding augmenting paths

- Max Clow have
- Find the maximum capacity augmenting path
 - O(m²log(C)) time algorithm for network flow
- Find the shortest augmenting path
 - O(m²n) time algorithm for network flow
- · Find a blocking flow in the residual graph
 - O(mnlog n) time algorithm for network flow

1956

History

Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Problem Reduction

- Reduce Problem A to Problem B
 - Convert an instance of Problem A to an instance of Problem B
 - Use a solution of Problem B to get a solution to Problem A
- Practical
 - Use a program for Problem B to solve Problem A
- Theoretical
 - Show that Problem B is at least as hard as Problem A

Problem Reduction Examples

 Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: 8, -3, 2, 12, 1, -6

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Bipartite Matching

 A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y

 A matching M is a subset of the edges that does not share any vertices

Find a matching as large as possible