CSEP 521
Applied Algorithms

Richard Anderson
Lecture 8
Network Flow



Announcements

* Reading for this week
— 6.8, (1, 7.2 [7.3-7.4 will not be covered]
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Next week: 7.5-7.12  WH=""0 | S0 Clow

* Final exam, March 18, 6:30 pm. At UW.
h"""lll-.____—-—-—-
— 2 hours

—In class (CSE 303/ CSE 309)

— Comprehensive
* 67% post midterm, 33% pre midterm




Bellman-Ford Shortest Paths
Algorithm

Computes shortest paths from a starting
vertex v

i

Allows negative cost edges
e — T —
— Negative cost cycles identified

Runtime O(nhm) D;’)\f»f.\*w 0(.“1[03%\

Easy to code



Bellman Ford Algorithm,

Version 2
foreach w \/\}
M[O, W] = infinity: \'f
M[O, v] = O: tf 3 0
fori=1to n-1 J M
foreach w ‘l “k

M[i, w] = min{M[i-1, w], min (M[i-1,x] + cost[x.w]}))
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Bellman Ford Algorithm,
Version 3

foreach w

M[w] = infinity;
M[v] = 0,
fori=1ton1

foreach w

M[w] = min(M[w], min,(M[x] + cost[x,w]))



Bellman Ford Example
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Finding the longest path in a
graph
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Foreign Exchange Arbitrage
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Qutline

( * Network flow definitions
* Flow examples

* Augmenting Paths

» Residual Graph

» Ford Fulkerson Algorithm

« Cuts
(' Maxflow-MinCut Theorem
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Flow Example
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Flow assignment and the residual
graph
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Network Flow Definitions

« Flowgraph: Directed graph with distinguished
vertices s (source) and t (sink)

« Capacities on the edges, c(e) >=0

« Problem, assign flows f(e) to the edges such
that:
[— 0 <=f(e) <=c(e)
— Flow is conserved at vertices otherthansandt

+ Flow conservation: flow going into a vertex equals the flow
going out

— The flow leaving the source is a large as possible



Flow Example




Find a maximum flow

Value of flow:

20

20

Construct a maximum flow and indicate the flow value
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—  Find a maximum flow

X




Augmenting Path Algorithm

* Augmenting path

— Vertices v4,V,, ...,V
*vV,=8, Vv, =t

« Possible to add b units of flow between Y andv
forj=1... k-1
- u, € (5)
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Find two augmenting paths




Residual Graph

* Flow graph showing the remaining capacity
* Flow graph G, Residual Graph Gg
— G: edge e from u to v with capacity ¢ and flow f
— Gg: edge e’ from u to v with capacity ¢ —f
— Gg: edge e from v to u with capacity f
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Residual Graph




S, V, W, ¢ E)
Augmenting Path Lemma

¢« LetP=v,, v, ..., Vv, bea path from s to t with
minimum capacity b in the residual graph.

« b units of flow can be added along the path P In
the flow graph.
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Proof 4 €’
o—bo
« Add b units of flow along the path P 1

« \WWhat do we need to verify to show we o

; . : forwesd €952

have a valid flow after we do this?
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Ford-Fulkerson Algorithm (1956)

while not done
Construct residual graph Gg
Find an s-t path P in Gy with capacity b > 0
Add b units along in G

If the sum of the capacities of edges leaving S

Is at most C, then the algorithm takes at most
C iteratiorts—



Cuts In a graph

Cut: Partition of V Into disjoint sets S, T with s In
SandtinT.

Cap(S,T): sum of the capacities of edges from
StoT

Flow(S, T): net flow out of S

— Sum of flows out of S minus sgm of flows into S




What is Cap(S,T) and Flow(S, T)
S={s,a, b,e h}, T={cfIddg,t}
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Minimgm value cut
$s3 3 v v &N ‘50




Find a minimum value cut
caplS, T 2 §W0CS, T )
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MaxFlow — MinCut Theorem

» LetS, T be acut, and F a flow
— Cap(S,T) >= Flow(S,T)
o If Cap(S,T) = Flow(S,T)
— S, T must be a minimum cut
— F must be a maximum flow
 The amazing Ford-Fulkerson theorem
shows that there is always a cut that

matches a flow, and also shows how their
algorithm finds the flow



MaxFlow — MinCut Theorem

« There exists a flow which has the same value of
the minimum cut

« Proof. Consider a flow where the residual graph
nas no s-t path with positive capacity

» Let S be the set of vertices in Gy reachable from
s with paths of positive capacity




Let S be the set of vertices in G reachable
from s with paths of Eositive capacity
e o

Fre
"

Fﬁl

Cap(5 7Y = Flow(§7)

What can we say about the flows and capacity
between u and v?



Max Flow - Min Cut Theorem

* Ford-Fulkerson algorithm finds a flow

where the residual graph is disconnected,
hence FF finds a maximum flow.

 If we want to find a minimum cut, we begin
by looking for a maximum flow.
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* The worst case performance of the Ford-
Fulkerson algorithm IS horrible
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Better methods of finding p  4rat -
augmenting paths Moy Clow launt

« Find the maximum capacity augmenting =i oe s
path O(l“" C)
— O(m?log(C)) time algorithm for network flow

* Find the shortest augmenting path
— O(m?24n) time algorithm for network flow

* Find a blocking flow in the residual graph
— O(mnlog n) time algorithm for network flow



Reference: On the Aisfons of the transportation ahcd masamuiim fiow probiers.
Alexander Schrifver in Math Programming, 91: 3, 2002,



Problem Reduction

« Reduce Problem A to Problem B

— Convert an instance of Problem A to an instance of
FProblem B

— Use a solution of Problem B to get a solution to
Problem A

« Practical
— Use a program for Problem B to solve Problem A

« Theoretical
— Show that Problem B is at least as hard as Problem A



Problem Reduction Examples

» Reduce the problem of finding the
Maximum of a set of integers to finding the
Minimum of a set of integers

Find the maximumof: 8 -3. 2. 12 1. -6

Construct an eguivalent minimization problem



Undirected Network Flow

* Undirected graph with edge capacities

* Flow may go either direction along the
edges (subject to the capacity constraints)
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Construct an equivalent flow problem



Bipartite Matching

* A graph G=(V,E) is bipartite if the vertices
can be partitioned into disjoints sets X,Y

* A matching M is a subset of the edges that
does not share any vertices

* Find a matching as large as possible



