Announcements

* Reading for this week

CSEP 521 -6.1-68
Applied Algorithms
Richard Anderson

Lecture 7
Dynamic Programming

Review from last week Weighted Interval Scheduling

Optimal linear interpolation Subset Sum Problem

» Letw,,...,w, ={6, 8,9, 11, 13, 16, 18, 24}
» Find a subset that has as large a sum as
possible, without exceeding 50

Error = 2(y, —ax; — b)?

Counting electoral votes

Dynamic Programming
Examples
Examples
— Optimal Billboard Placement
» Text, Solved Exercise, Pg 307
— Linebreaking with hyphenation
» Compare with HW problem 6, Pg 317

— String approximation
» Text, Solved Exercise, Page 309

Billboard Placement

* Maximize income in placing billboards

—b; = (p;, vj), v;: value of placing billboard at
position p;

+ Constraint:

— At most one billboard every five miles
* Example

-{(6.5), (8,6), (12, 5), (14, 1)}

Design a Dynamic Programming
Algorithm for Billboard Placement

« Compute Opt[1], Opt[2], . . ., Opt[n]
* What is Opt[k]?

..., by, where b; = (p;, v)), position and value of billboard i

Opt[k] = fun(Opt[0],...,Opt[k-1])

* How is the solution determined from sub
problems?

Input by, ..., b, where bi = (p;, v), position and value of billboard i

Solution

j=0; 1l jis five miles behind the current position

/I the last valid location for a billboard, if one placed at P[k]

fork:=1ton

while (P[j] < P[k]-5)
=ity
j=i-n
Opt[k] =Max(Opt[k-1], V[k] + Opt[j]);

Optimal line breaking and hyphen-
ation

» Problem: break lines and insert hyphens to
make lines as balanced as possible
» Typographical considerations:
— Avoid excessive white space
— Limit number of hyphens
— Avoid widows and orphans
— Etc.

Penalty Function

* Pen(i, j) — penalty of starting a line a
position i, and ending at position |

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming

+ Key technical idea
— Number the breaks between words/syllables

String approximation

* Given a string S, and a library of strings B
={b,, ...b,,}, construct an approximation of
the string S by using copies of strings in B.

B = {abab, bbbaaa, ccbb, ccaacc}
S = abaccbbbaabbccbbccaabab

Formal Model

Strings from B assigned to non-
overlapping positions of S

Strings from B may be used multiple times
Cost of 8 for unmatched character in S
Cost of y for mismatched character in S

— MisMatch(i, j) — number of mismatched
characters of b;, when aligned starting with
positioniin s.

Design a Dynamic Programming
Algorithm for String Approximation

» Compute Opt[1], Opt[2], . . ., Opt[n]
» What is Opt[k]?

Target string S =s;S,...s,

Library of strings B = {b, ...,b,}

MisMatch(i,j) = number of mismatched characters with b; when aligned
starting at position i of S.

Opt[k] = fun(Opt[0],...,Opt[k-1])

* How is the solution determined from sub
problems?

Target string S =s;5,...8,

Library of strings B = {b, ...,b,,}

MisMatch(i,j) = number of mismatched characters with b; when aligned
starting at position i of S.

Solution

fori:=1ton
Opt[k] = Opt[k-1] + §;
forj:=1to|B|

p =i-len(b);
Opt[k] = min(Opt[k], Opt[p-1] +y MisMatch(p, j));

Longest Common
Subsequence

Longest Common Subsequence

* C=c;...cy is a subsequence of A=a,...ay, if
C can be obtained by removing elements
from A (but retaining order)

* LCS(A, B): A maximum length sequence
that is a subsequence of both A and B
ocurranec attacggct

occurrence tacgacca

Determine the LCS of the following
strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

+ Align sequences with gaps
CAT TGA AT

CAGAT AGGA

» Charge 3, if character x is unmatched

* Charge y,, if character x is matched to
charactery

Note: the problem is often expressed as a minimization problem,
with v, =0and 5, >0

LCS Optimization

* A=aa,...a,
* B=Db;b,...b,

« Opt[], K] is the length of
LCS(a,3,---8;, byb,...by)

Optimization recurrence

Ifa;=b,, Opt[jk]=1+O0pt[j1, k1]

If & != by, Opt[j,K] = max(Opt[j-1,k], Opt] j,k-1])

Give the Optimization Recurrence
for the String Alignment Problem

» Charge &, if character x is unmatched

* Charge y,, if character x is matched to
charactery

Opt[j, k] =

Letaj=xandb, =y
Express as minimization

Dynamic Programming

Computation
% %% %%
%% %%
%% %%Y%
% %%%Y%
%% %%Y%
%% %%

Code to compute Opt[j,k]

Storing the path information

A[l.m], B[1..n] c
Q
fori:=1tom Opt[i, 0] := 0; _1
o
forj:=1ton Opt[0,j] :=0;

Opt[0,0] := 0;
fori:==1tom BaeeeBm
forj:=1ton
if Ali] = B[j] { Opt[i,j] := 1 + Opt[i-1,-1]; Best[i,j] := Diag; }
else if Opt[i-1, j] >= Opt[i, j-1]
{ Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; }
else { Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; }

How good is this algorithm?

« Is it feasible to compute the LCS of two
strings of length 100,000 on a standard
desktop PC? Why or why not.

Observations about the Algorithm

» The computation can be done in O(m+n)
space if we only need one column of the
Opt values or Best Values

» The algorithm can be run from either end
of the strings

Computing LCS in O(nhm) time and
O(n+m) space

« Divide and conquer algorithm

» Recomputing values used to save space

Divide and Conquer Algorithm

* Where does the best path cross the
middle column? -

* For a fixed i, and for each j, compute the
LCS that has a; matched with b

Constrained LCS

» LCS;(AB): The LCS such that

* LCS, ;(abbacbb, cbbaa)

A = RRSSRTTRTS
B=RTSRRSTST

Compute LCS; 4(A,B), LCSs 1(A,B),...,.LCSs 4(A,B)

A = RRSSRTTRTS
B=RTSRRSTST

Compute LCS;4(A,B), LCSg 1(A,B),...,LCSs o(A,B)

left | right
0

olo(N|lo|a|r|w [Nk |o
Arlw|lw|w|w|[N|[k |~

Computing the middle column

* From the left, compute LCS(a;...am;,b;...0)
+ From the right, compute LCS(ap41---8m,Dj41---bp)
» Add values for corresponding j's

» Note — this is space efficient

Divide and Conquer

* A=a,...,.a, B="b,,...,b,
* Find j such that
—LCS(a;.. -8, b;...b) and
- LCS(amp+1---8mbjs1---by) Yield optimal solution

* Recurse

Algorithm Analysis

e T(m,n) = T(M/2, j) + T(M/2, n-j) + cnm

Prove by induction that
T(m,n) <= 2cmn

Memory Efficient LCS Summary

» We can afford O(nm) time, but we can’t
afford O(nm) space

« If we only want to compute the length of
the LCS, we can easily reduce space to
O(n+m)

 Avoid storing the value by recomputing
values

— Divide and conquer used to reduce problem
sizes

Shortest Paths with Dynamic
Programming

Shortest Path Problem

Dijkstra’s Single Source Shortest Paths

Algorithm

— O(mlog n) time, positive cost edges

» General case — handling negative edges

+ If there exists a negative cost cycle, the
shortest path is not defined

* Bellman-Ford Algorithm

— O(mn) time for graphs with negative cost
edges

Lemma

« If a graph has no negative cost cycles,
then the shortest paths are simple paths

+ Shortest paths have at most n-1 edges

Shortest paths with a fixed number
of edges

* Find the shortest path from v to w with
exactly k edges

Express as a recurrence

* Optk(W) = minx [Optk-l(X) + Cxw]
* Opty(w) = 0 if v=w and infinity otherwise

Algorithm, Version 1

foreach w

MO, w] = infinity;
M[O, v] = 0;
fori=1ton-1

foreach w

MI[i, w] = min,(M[i-1,x] + cost[x,w]);

Algorithm, Version 2

foreach w
MI[O, w] = infinity;
MO, v] = 0;
fori=1ton-1
foreach w
MI[i, w] = min(M[i-1, w], min(M[i-1,x] + cost[x,w]))

Algorithm, Version 3

foreach w
M[w] = infinity;
M[v] = 0;
fori=1ton-1
foreach w
M[w] = min(M[w], min(M[x] + cost[x,w]))

If the pointer graph has a cycle, then
the graph has a negative cost cycle

 If P[w] = x then M[w] >= M[X] + cost(x,w)
— Equal when w is updated
— M[x] could be reduced after update
* Letvy, v,,...v, be a cycle in the pointer graph
with (v,,v,) the last edge added
— Just before the update

+ M[V] >= M[V,uy] + COSH(V,0, V) for j < K Vi@ Va
* M[v,] > M[v,] + cost(vy, v,)
— Adding everything up Vv, € Vs

* 0> cost(vy,V,) + COSt(vy,V3) + ... + cost(vy, vy)

Correctness Proof for Algorithm 3

+ Key lemma — at the end of iteration i, for
all w, M[w] <= MI[i, w];

» Reconstructing the path:
— Set P[w] = x, whenever M[w] is updated from
vertex x

Negative Cycles

« If the pointer graph has a cycle, then the
graph has a negative cycle

» Therefore: if the graph has no negative
cycles, then the pointer graph has no
negative cycles

Finding negative cost cycles
* What if you want to find negative cost cycles?
/"AZ
\\

Foreign Exchange Arbitrage

usD
12 12
USD |EUR |CAD
EUR cap |USD |------ 0.8 |1.2
06
EUR |1.2 |------ 1.6
USsD
CAD |0.8 |0.6 |--—---
@)

