
CSEP 521

Applied Algorithms

Richard Anderson

Lecture 7

Dynamic Programming

Announcements

• Reading for this week

– 6.1-6.8

Review from last week

Weighted Interval Scheduling

Optimal linear interpolation

Error = S(yi –axi – b)2

Subset Sum Problem

• Let w1,…,wn = {6, 8, 9, 11, 13, 16, 18, 24}

• Find a subset that has as large a sum as

possible, without exceeding 50

Counting electoral votes

Dynamic Programming

Examples
• Examples

– Optimal Billboard Placement

• Text, Solved Exercise, Pg 307

– Linebreaking with hyphenation

• Compare with HW problem 6, Pg 317

– String approximation

• Text, Solved Exercise, Page 309

Billboard Placement

• Maximize income in placing billboards

– bi = (pi, vi), vi: value of placing billboard at

position pi

• Constraint:

– At most one billboard every five miles

• Example

– {(6,5), (8,6), (12, 5), (14, 1)}

Design a Dynamic Programming

Algorithm for Billboard Placement

• Compute Opt[1], Opt[2], . . ., Opt[n]

• What is Opt[k]?

Input b1, …, bn, where bi = (pi, vi), position and value of billboard i

Opt[k] = fun(Opt[0],…,Opt[k-1])

• How is the solution determined from sub

problems?

Input b1, …, bn, where bi = (pi, vi), position and value of billboard i

Solution

j = 0; // j is five miles behind the current position

 // the last valid location for a billboard, if one placed at P[k]

for k := 1 to n

 while (P[j] < P[k] – 5)

 j := j + 1;

 j := j – 1;

 Opt[k] = Max(Opt[k-1] , V[k] + Opt[j]);

Optimal line breaking and hyphen-

ation

• Problem: break lines and insert hyphens to

make lines as balanced as possible

• Typographical considerations:

– Avoid excessive white space

– Limit number of hyphens

– Avoid widows and orphans

– Etc.

Penalty Function

• Pen(i, j) – penalty of starting a line a

position i, and ending at position j

• Key technical idea

– Number the breaks between words/syllables

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming

String approximation

• Given a string S, and a library of strings B

= {b1, …bm}, construct an approximation of

the string S by using copies of strings in B.

B = {abab, bbbaaa, ccbb, ccaacc}

S = abaccbbbaabbccbbccaabab

Formal Model

• Strings from B assigned to non-

overlapping positions of S

• Strings from B may be used multiple times

• Cost of d for unmatched character in S

• Cost of g for mismatched character in S

– MisMatch(i, j) – number of mismatched

characters of bj, when aligned starting with

position i in s.

Design a Dynamic Programming

Algorithm for String Approximation

• Compute Opt[1], Opt[2], . . ., Opt[n]

• What is Opt[k]?

Target string S = s1s2…sn

Library of strings B = {b1,…,bm}

MisMatch(i,j) = number of mismatched characters with bj when aligned

starting at position i of S.

Opt[k] = fun(Opt[0],…,Opt[k-1])

• How is the solution determined from sub

problems?

Target string S = s1s2…sn

Library of strings B = {b1,…,bm}

MisMatch(i,j) = number of mismatched characters with bj when aligned

starting at position i of S.

Solution

for i := 1 to n

 Opt[k] = Opt[k-1] + d;

 for j := 1 to |B|

 p = i – len(bj);

 Opt[k] = min(Opt[k], Opt[p-1] + g MisMatch(p, j));

Longest Common

Subsequence

Longest Common Subsequence

• C=c1…cg is a subsequence of A=a1…am if

C can be obtained by removing elements

from A (but retaining order)

• LCS(A, B): A maximum length sequence

that is a subsequence of both A and B

 ocurranec

occurrence

attacggct

tacgacca

Determine the LCS of the following

strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

• Align sequences with gaps

• Charge dx if character x is unmatched

• Charge gxy if character x is matched to

character y

CAT TGA AT

CAGAT AGGA

Note: the problem is often expressed as a minimization problem,

with gxx = 0 and dx > 0

LCS Optimization

• A = a1a2…am

• B = b1b2…bn

• Opt[j, k] is the length of

LCS(a1a2…aj, b1b2…bk)

Optimization recurrence

If aj = bk, Opt[j,k] = 1 + Opt[j-1, k-1]

If aj != bk, Opt[j,k] = max(Opt[j-1,k], Opt[j,k-1])

Give the Optimization Recurrence

for the String Alignment Problem

• Charge dx if character x is unmatched

• Charge gxy if character x is matched to

character y

Opt[j, k] =

Let aj = x and bk = y

Express as minimization

Dynamic Programming

Computation

Code to compute Opt[j,k]

Storing the path information

A[1..m], B[1..n]

for i := 1 to m Opt[i, 0] := 0;

for j := 1 to n Opt[0,j] := 0;

Opt[0,0] := 0;

for i := 1 to m

 for j := 1 to n

 if A[i] = B[j] { Opt[i,j] := 1 + Opt[i-1,j-1]; Best[i,j] := Diag; }

 else if Opt[i-1, j] >= Opt[i, j-1]

 { Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; }

 else { Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; }

a1…am

b
1
…

b
n

How good is this algorithm?

• Is it feasible to compute the LCS of two

strings of length 100,000 on a standard

desktop PC? Why or why not.

Observations about the Algorithm

• The computation can be done in O(m+n)

space if we only need one column of the

Opt values or Best Values

• The algorithm can be run from either end

of the strings

Computing LCS in O(nm) time and

O(n+m) space

• Divide and conquer algorithm

• Recomputing values used to save space

Divide and Conquer Algorithm

• Where does the best path cross the
middle column?

• For a fixed i, and for each j, compute the
LCS that has ai matched with bj

Constrained LCS

• LCSi,j(A,B): The LCS such that

– a1,…,ai paired with elements of b1,…,bj

– ai+1,…am paired with elements of bj+1,…,bn

• LCS4,3(abbacbb, cbbaa)

A = RRSSRTTRTS

B=RTSRRSTST

Compute LCS5,0(A,B), LCS5,1(A,B),…,LCS5,9(A,B)

A = RRSSRTTRTS

B=RTSRRSTST

Compute LCS5,0(A,B), LCS5,1(A,B),…,LCS5,9(A,B)

 j left right

0 0 4

1 1 4

2 1 3

3 2 3

4 3 3

5 3 2

6 3 2

7 3 1

8 4 1

9 4 0

Computing the middle column

• From the left, compute LCS(a1…am/2,b1…bj)

• From the right, compute LCS(am/2+1…am,bj+1…bn)

• Add values for corresponding j’s

• Note – this is space efficient

Divide and Conquer

• A = a1,…,am B = b1,…,bn

• Find j such that

– LCS(a1…am/2, b1…bj) and

– LCS(am/2+1…am,bj+1…bn) yield optimal solution

• Recurse

Algorithm Analysis

• T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm

Prove by induction that

T(m,n) <= 2cmn

Memory Efficient LCS Summary

• We can afford O(nm) time, but we can’t
afford O(nm) space

• If we only want to compute the length of
the LCS, we can easily reduce space to
O(n+m)

• Avoid storing the value by recomputing
values

– Divide and conquer used to reduce problem
sizes

Shortest Paths with Dynamic

Programming

Shortest Path Problem

• Dijkstra’s Single Source Shortest Paths
Algorithm

– O(mlog n) time, positive cost edges

• General case – handling negative edges

• If there exists a negative cost cycle, the
shortest path is not defined

• Bellman-Ford Algorithm

– O(mn) time for graphs with negative cost
edges

Lemma

• If a graph has no negative cost cycles,

then the shortest paths are simple paths

• Shortest paths have at most n-1 edges

Shortest paths with a fixed number

of edges

• Find the shortest path from v to w with

exactly k edges

Express as a recurrence

• Optk(w) = minx [Optk-1(x) + cxw]

• Opt0(w) = 0 if v=w and infinity otherwise

Algorithm, Version 1

foreach w

 M[0, w] = infinity;

M[0, v] = 0;

for i = 1 to n-1

 foreach w

 M[i, w] = minx(M[i-1,x] + cost[x,w]);

Algorithm, Version 2

foreach w

 M[0, w] = infinity;

M[0, v] = 0;

for i = 1 to n-1

 foreach w

 M[i, w] = min(M[i-1, w], minx(M[i-1,x] + cost[x,w]))

Algorithm, Version 3

foreach w

 M[w] = infinity;

M[v] = 0;

for i = 1 to n-1

 foreach w

 M[w] = min(M[w], minx(M[x] + cost[x,w]))

Correctness Proof for Algorithm 3

• Key lemma – at the end of iteration i, for

all w, M[w] <= M[i, w];

• Reconstructing the path:

– Set P[w] = x, whenever M[w] is updated from

vertex x

If the pointer graph has a cycle, then

the graph has a negative cost cycle

• If P[w] = x then M[w] >= M[x] + cost(x,w)

– Equal when w is updated

– M[x] could be reduced after update

• Let v1, v2,…vk be a cycle in the pointer graph

with (vk,v1) the last edge added

– Just before the update

• M[vj] >= M[vj+1] + cost(vj+1, vj) for j < k

• M[vk] > M[v1] + cost(v1, vk)

– Adding everything up

• 0 > cost(v1,v2) + cost(v2,v3) + … + cost(vk, v1)

v2 v3

v1 v4

Negative Cycles

• If the pointer graph has a cycle, then the

graph has a negative cycle

• Therefore: if the graph has no negative

cycles, then the pointer graph has no

negative cycles

Finding negative cost cycles

• What if you want to find negative cost cycles?

Foreign Exchange Arbitrage

USD EUR CAD

USD ------ 0.8 1.2

EUR 1.2 ------ 1.6

CAD 0.8 0.6 -----

USD

CAD EUR

1.2 1.2

0.6

USD

CAD EUR

0.8 0.8

1.6

