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Announcements 

• Reading for this week 

– 6.1-6.8 

 



Review from last week 

 



Weighted Interval Scheduling 

 



Optimal linear interpolation    

Error = S(yi –axi – b)2 



Subset Sum Problem 

• Let w1,…,wn = {6, 8, 9, 11, 13, 16, 18, 24} 

• Find a subset that has as large a sum as 

possible, without exceeding 50 



Counting electoral votes 

 



Dynamic Programming 

Examples 
• Examples 

– Optimal Billboard Placement 

• Text, Solved Exercise, Pg 307 

– Linebreaking with hyphenation 

• Compare with HW problem 6, Pg 317 

– String approximation 

• Text, Solved Exercise, Page 309 

 



Billboard Placement 

• Maximize income in placing billboards 

– bi = (pi, vi),  vi: value of placing billboard at  

position pi 

• Constraint: 

– At most one billboard every five miles 

• Example 

– {(6,5), (8,6), (12, 5), (14, 1)} 



Design a Dynamic Programming  

Algorithm for Billboard Placement 

• Compute Opt[1], Opt[2], . . ., Opt[n] 

• What is Opt[k]? 

Input b1, …, bn, where bi = (pi, vi), position and value of billboard i 



Opt[k] = fun(Opt[0],…,Opt[k-1]) 

• How is the solution determined from sub 

problems? 

Input b1, …, bn, where bi = (pi, vi), position and value of billboard i 



Solution 

j = 0;                // j is five miles behind the current position 

                         // the last valid location for a billboard, if one placed at P[k] 

for k := 1 to n 

 while (P[ j ] < P[ k ] – 5) 

  j := j + 1; 

 j := j – 1; 

 Opt[ k]  = Max(Opt[ k-1] , V[ k ] + Opt[ j ]); 

 



Optimal line breaking and hyphen-

ation 

• Problem: break lines and insert hyphens to 

make lines as balanced as possible 

• Typographical considerations: 

– Avoid excessive white space 

– Limit number of hyphens 

– Avoid widows and orphans 

– Etc.  



Penalty Function 

• Pen(i, j) – penalty of starting a line a 

position i, and ending at position j 

 

 

 

 

• Key technical idea 

– Number the breaks between words/syllables 

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming 



String approximation 

• Given a string S, and a library of strings B 

= {b1, …bm}, construct an approximation of 

the string S by using copies of strings in B.  

B = {abab, bbbaaa, ccbb, ccaacc} 

S = abaccbbbaabbccbbccaabab 



Formal Model 

• Strings from B assigned to non-

overlapping positions of S 

• Strings from B may be used multiple times 

• Cost of d for unmatched character in S 

• Cost of g for mismatched character in S 

– MisMatch(i, j) – number of mismatched 

characters of bj, when aligned starting with 

position i in s. 



Design a Dynamic Programming 

Algorithm for String Approximation 

• Compute Opt[1], Opt[2], . . ., Opt[n] 

• What is Opt[k]? 

Target string S = s1s2…sn 

Library of strings B = {b1,…,bm} 

MisMatch(i,j) = number of mismatched characters with bj when aligned 

starting at position i of S. 



Opt[k] = fun(Opt[0],…,Opt[k-1]) 

• How is the solution determined from sub 

problems? 

Target string S = s1s2…sn 

Library of strings B = {b1,…,bm} 

MisMatch(i,j) = number of mismatched characters with bj when aligned 

starting at position i of S. 



Solution 

for i := 1 to n 

 Opt[k] = Opt[k-1] + d; 

 for j := 1 to |B| 

  p = i – len(bj); 

  Opt[k] = min(Opt[k],  Opt[p-1] + g MisMatch(p, j)); 

   



Longest Common 

Subsequence 



Longest Common Subsequence 

• C=c1…cg is a subsequence of A=a1…am if 

C can be obtained by removing elements 

from A (but retaining order) 

• LCS(A, B):  A maximum length sequence 

that is a subsequence of both A and B 

 ocurranec 

occurrence 

attacggct 

tacgacca 



Determine the LCS of the following 

strings 

BARTHOLEMEWSIMPSON 

 

KRUSTYTHECLOWN 

 



String Alignment Problem 

• Align sequences with gaps 

 

 

 

• Charge dx if character x is unmatched 

• Charge gxy if character x is matched to 

character y 

CAT TGA  AT 

CAGAT AGGA 

Note: the problem is often expressed as a minimization problem,   

with gxx = 0 and dx > 0 



LCS Optimization 

• A = a1a2…am 

• B = b1b2…bn 

 

• Opt[ j, k] is the length of          

LCS(a1a2…aj, b1b2…bk) 



Optimization recurrence 

If aj = bk,  Opt[ j,k ] = 1 + Opt[ j-1, k-1 ] 

 

If aj != bk,  Opt[ j,k] = max(Opt[ j-1,k], Opt[ j,k-1]) 



Give the Optimization Recurrence 

for the String Alignment Problem 

• Charge dx if character x is unmatched 

• Charge gxy if character x is matched to 

character y 

 
Opt[ j, k] =  

 

 

 

Let aj = x and bk = y         

Express as minimization 



Dynamic Programming 

Computation 



Code to compute Opt[j,k]   



Storing the path information 

A[1..m],  B[1..n] 

for i := 1 to m     Opt[i, 0] := 0; 

for j := 1 to n     Opt[0,j] := 0; 

Opt[0,0] := 0; 

for i := 1 to m 

 for j := 1 to n 

  if A[i] = B[j]  {  Opt[i,j] := 1 + Opt[i-1,j-1];  Best[i,j] := Diag; } 

  else if Opt[i-1, j] >= Opt[i, j-1] 

   {  Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; } 

  else        {  Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; } 

 

a1…am 

b
1
…

b
n

 



How good is this algorithm? 

• Is it feasible to compute the LCS of two 

strings of length 100,000 on a standard 

desktop PC?  Why or why not. 



Observations about the Algorithm 

• The computation can be done in O(m+n) 

space if we only need one column of the 

Opt values or Best Values 

 

• The algorithm can be run from either end 

of the strings 

 

 



Computing LCS in O(nm) time and 

O(n+m) space 

• Divide and conquer algorithm 

• Recomputing values used to save space 



Divide and Conquer Algorithm 

• Where does the best path cross the 
middle column? 

 

 

 

 

 

• For a fixed i, and for each j, compute the 
LCS that has ai matched with bj 



Constrained LCS 

• LCSi,j(A,B):  The LCS such that 

– a1,…,ai paired with elements of b1,…,bj 

– ai+1,…am paired with elements of bj+1,…,bn 

 

 

• LCS4,3(abbacbb, cbbaa) 

 

 



A = RRSSRTTRTS 

B=RTSRRSTST 

Compute LCS5,0(A,B), LCS5,1(A,B),…,LCS5,9(A,B) 

 



A = RRSSRTTRTS 

B=RTSRRSTST 

Compute LCS5,0(A,B), LCS5,1(A,B),…,LCS5,9(A,B) 

 j left right 

0 0 4 

1 1 4 

2 1 3 

3 2 3 

4 3 3 

5 3 2 

6 3 2 

7 3 1 

8 4 1 

9 4 0 



Computing the middle column 

• From the left, compute LCS(a1…am/2,b1…bj) 

• From the right, compute LCS(am/2+1…am,bj+1…bn) 

• Add values for corresponding j’s 

 

 

 

 

• Note – this is space efficient 



Divide and Conquer 

• A = a1,…,am               B = b1,…,bn 

• Find j such that  

– LCS(a1…am/2, b1…bj) and 

– LCS(am/2+1…am,bj+1…bn) yield optimal solution 

 

• Recurse 



Algorithm Analysis 

• T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm 



Prove by induction that  

T(m,n) <= 2cmn 

 



Memory Efficient LCS Summary 

• We can afford O(nm) time, but we can’t 
afford O(nm) space 

• If we only want to compute the length of 
the LCS, we can easily reduce space to 
O(n+m) 

• Avoid storing the value by recomputing 
values 

– Divide and conquer used to reduce problem 
sizes 

 



Shortest Paths with Dynamic 

Programming 

  



Shortest Path Problem 

• Dijkstra’s Single Source Shortest Paths 
Algorithm 

– O(mlog n) time, positive cost edges 

• General case – handling negative edges 

• If there exists a negative cost cycle, the 
shortest path is not defined 

• Bellman-Ford Algorithm 

– O(mn) time for graphs with negative cost 
edges 



Lemma 

• If a graph has no negative cost cycles, 

then the shortest paths are simple paths 

 

• Shortest paths have at most n-1 edges 



Shortest paths with a fixed number 

of edges 

• Find the shortest path from v to w with 

exactly k edges 

 



Express as a recurrence 

• Optk(w) = minx [Optk-1(x) + cxw] 

• Opt0(w) = 0 if v=w and infinity otherwise  

 



Algorithm, Version 1 

foreach w 

 M[0, w] = infinity; 

M[0, v] = 0; 

for i = 1 to n-1 

 foreach w 

  M[i, w] = minx(M[i-1,x] + cost[x,w]); 

 



Algorithm, Version 2 

foreach w 

 M[0, w] = infinity; 

M[0, v] = 0; 

for i = 1 to n-1 

 foreach w 

  M[i, w] = min(M[i-1, w], minx(M[i-1,x] + cost[x,w])) 

 



Algorithm, Version 3 

foreach w 

 M[w] = infinity; 

M[v] = 0; 

for i = 1 to n-1 

 foreach w 

  M[w] = min(M[w], minx(M[x] + cost[x,w])) 

 



Correctness Proof for Algorithm 3 

• Key lemma – at the end of iteration i, for 

all w,  M[w] <= M[i, w]; 

 

 

• Reconstructing the path: 

– Set P[w] = x, whenever M[w] is updated from 

vertex x 



If the pointer graph has a cycle, then 

the graph has a negative cost cycle 

• If P[w] = x then M[w] >= M[x] + cost(x,w) 

– Equal when w is updated 

– M[x] could be reduced after update 

• Let v1, v2,…vk be a cycle in the pointer graph 

with (vk,v1) the last edge added 

– Just before the update 

• M[vj] >= M[vj+1] + cost(vj+1, vj) for j < k 

• M[vk] > M[v1] + cost(v1, vk) 

– Adding everything up 

• 0 > cost(v1,v2) + cost(v2,v3) + … + cost(vk, v1) 

 

v2 v3 

v1 v4 



Negative Cycles 

• If the pointer graph has a cycle, then the 

graph has a negative cycle 

• Therefore:  if the graph has no negative 

cycles, then the pointer graph has no 

negative cycles 



Finding negative cost cycles 

• What if you want to find negative cost cycles? 

  



Foreign Exchange Arbitrage 

USD EUR CAD 

USD ------ 0.8 1.2 

EUR 1.2 ------ 1.6 

CAD 0.8 0.6 ----- 

USD 

CAD EUR 

1.2 1.2 

0.6 

USD 

CAD EUR 

0.8 0.8 

1.6 


