CSEP 521
Applied Algorithms

Richard Anderson
Lecture 7
Dynamic Programming

Announcements

* Reading for this week
—6.1-6.8

Review from last week

Weighted Interval Scheduling

Optimal linear interpolation

Error = Z(yi —ax; — b)?

Subset Sum Problem

. Letw,,...,w, ={6, 8,9, 11, 13, 16, 18, 24}

* Find a subset that has as large a sum as
possible, without exceeding 50

Counting electoral votes

Dynamic Programming

Examples

 Examples
— Optimal Billboard Placement
» Text, Solved Exercise, Pg 307

— Linebreaking with hyphenation
« Compare with HW problem 6, Pg 317

— String approximation
» Text, Solved Exercise, Page 309

Billboard Placement

* Maximize income In placing billboards

—b. = (p;, v;), v.: value of placing billboard at
position p,

« Constraint:
— At most one billboard every five miles

« Example
—{(6,5), (8,6), (12, 5), (14, 1)}

Design a Dynamic Programming
Algorithm for Billboard Placement

« Compute Opt[1], Opt[2], .. ., Opt|n]
* What is Opt[k]?

Input by, ..., b,, where b, = (p;, v;), position and value of billboard i

Opt[K] = fun(Opt[0],...,Opt[k-1])

* How Is the solution determined from sub
problems?

Input by, ..., b,, where bi = (p,, v;), position and value of billboard i

Solution

j=0; /'] is five miles behind the current position

/Il the last valid location for a billboard, if one placed at P[k]

fork:=1ton
while (P[j]<P[k]-5)
ji=itr L
j=i-1

Opt[k] = Max(Opt[k-1], V[k] + Opt[j D;

Optimal line breaking and hyphen-
ation

* Problem: break lines and insert hyphens to
make lines as balanced as possible

* Typographical considerations:
— Avoid excessive white space
— Limit number of hyphens
— Avoid widows and orphans
— Etc.

Penalty Function

* Pen(l, |) — penalty of starting a line a
position i, and ending at position |

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming

» Key technical idea
— Number the breaks between words/syllables

String approximation

* Given a string S, and a library of strings B
={b,, ...b.}, construct an approximation of
the string S by using copies of strings in B.

B = {abab, bbbaaa, ccbb, ccaacc}
S = abaccbbbaabbccbbccaabab

Formal Model

Strings from B assigned to non-
overlapping positions of S

Strings from B may be used multiple times
Cost of o for unmatched character in S

Cost of y for mismatched character in S

— MisMatch(i, j) — number of mismatched
characters of b;, when aligned starting with
position i in s.

Design a Dynamic Programming
Algorithm for String Approximation

« Compute Opt[1], Opt[2], .. ., Opt|n]
* What is Opt[k]?

Target string S = s;S,...S,
Library of strings B = {b, ...,b.,}

MisMatch(i,j) = number of mismatched characters with b; when aligned
starting at position i of S.

Opt[K] = fun(Opt[0],...,Opt[k-1])

* How Is the solution determined from sub
problems?

Target string S = s;S,...S,
Library of strings B = {b, ...,b.,}

MisMatch(i,j) = number of mismatched characters with b; when aligned
starting at position i of S.

Solution

fori:=1ton
Opt[k] = Opt[k-1] + ;
forj:=1to |B]

p =1-len(b);
Opt[k] = min(Opt[k], Opt[p-1] + y MisMatch(p, j));

Longest Common
Subseqguence

Longest Common Subseguence

* C=c,...c,Is a subsequence of A=a,...a, If
C can be obtained by removing elements
from A (but retaining order)

« LCS(A, B): A maximum length sequence
that Is a subsequence of both A and B

ocurranec attacggct

occurrence tacgacca

Determine the LCS of the following
strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

 Align sequences with gaps
CAT TGA AT

CAGAT AGGA

« Charge o, If character x iIs unmatched

» Charge v,, If character x is matched to
charactery

Note: the problem is often expressed as a minimization problem,
with y,, =0 and 5, >0

LCS Optimization

* A=a;a,...a,
* B=Db,b,...b,

« Opt[j, k] is the length of
LCS(a,a,...a;, bib,...by)

Optimization recurrence

Ifa = by, Opt[j,k]=1+Opt[j-1, k-1]

If a 1= b,, Opt[j,k] = max(Opt] j-1,k], Opt[j,k-1])

Give the Optimization Recurrence
for the String Alignment Problem

« Charge o, If character x is unmatched

» Charge v,, If character x iIs matched to
charactery

Opt[J, k] =

Leta,=xand b, =y
Express as minimization

Dynamic Programming
Computation

Code to compute Opt[j,K]

Storing the path information

A[l..m], B[1..n]
fori:=1tom Opt[i, 0] :=0;
forj:=1ton Opt[0,j] :=0;

Opt[0,0] := 0O;
fori:=1tom
forj:=1ton
if Ali] = B[j] { Optli,j] ;=1 + Opt[i-1,j-1]; Best[i,j] := Diag; }
else if Opt[i-1, j] >= Opt[i, j-1]
{ Opt[i, j] := Opt[i-1, j], Best][i,j] := Left; }
else { Opt[i, j] := Opt[i, j-1], Best][i,j] := Down; }

How good is this algorithm?

* Is It feasible to compute the LCS of two
strings of length 100,000 on a standard
desktop PC? Why or why not.

Observations about the Algorithm

 The computation can be done in O(m+n)
space If we only need one column of the
Opt values or Best Values

* The algorithm can be run from either end
of the strings

Computing LCS in O(nm) time and
O(n+m) space

* Divide and conquer algorithm

 Recomputing values used to save space

Divide and Conguer Algorithm

* Where does the best path cross the
middle column?

* For a fixed I, and for each |, compute the
LCS that has a; matched with b,

Constrained LCS

* LCS;;(A,B): The LCS such that

* LCS, ;(abbacbb, cbbaa)

A = RRSSRTTRTS
B=RTSRRSTST

Compute LCS; ((A,B), LCS;,(A,B),...,.LCS5 4(A,B)

Compute LCS; ((A,B), LCS;,(A,B),...,.LCS5 4(A,B)

A = RRSSRTTRTS

o =

left

-

ight

0

O |IN|O(O A~ |W|IN|[F]|O

ArIRAIWOWIWIWIWIN|F|PF

O|IFR|IFPININIWIWIW|PA|PH

B=RTSRRSTST

Computing the middle column

From the left, compute LCS(a;...ay,,b;...b)
From the right, compute LCS(a, 41 ---@m:Dj41---bp)
Add values for corresponding j's

Note — this is space efficient

Divide and Conquer

« A=a,...,a, B=Db,,....b
* Find j such that

—LCS(a;...ay, by...b) and

- LCS(a,,/541---@pms bJ+1 b,,) yield optimal solution

n

e Recurse

Algorithm Analysis

« T(m,n) = T(M/2,)) + T(M/2, n-)) + chm

Prove by induction that
T(m,n) <= 2cmn

Memory Efficient LCS Summary

We can afford O(nm) time, but we can’t
afford O(nm) space

If we only want to compute the length of
the LCS, we can easily reduce space to
O(n+m)

Avoid storing the value by recomputing
values

— Divide and conquer used to reduce problem
sizes

Shortest Paths with Dynamic
Programming

Shortest Path Problem

Dijkstra’s Single Source Shortest Paths
Algorithm

— O(mlog n) time, positive cost edges
General case — handling negative edges

If there exists a negative cost cycle, the
shortest path is not defined

Bellman-Ford Algorithm

— O(mn) time for graphs with negative cost
edges

Lemma

* |If a graph has no negative cost cycles,
then the shortest paths are simple paths

« Shortest paths have at most n-1 edges

Shortest paths with a fixed number
of edges

* Find the shortest path from v to w with
exactly k edges

EXpress as a recurrence

* Opt(w) = min, [Opty ;(X) + Cy,]
* Opty(w) = 0 If v=w and infinity otherwise

Algorithm, Version 1

foreach w

M[O, w] = infinity;
M[O, v] = O;
fori=1ton-1

foreach w

MI[i, w] = min (M[i-1,X] + cost[x,w]);

Algorithm, Version 2

foreach w

M[O, w] = infinity;
M[O, v] = O;
fori=1ton-1

foreach w

MIi, W] = min(M[i-1, w], min (M[i-1,x] + cost[x,w]))

Algorithm, Version 3

foreach w

M[w] = infinity;
M[v] = O;
fori=1ton-1

foreach w

M[w] = min(M[w], min (M[x] + cost[x,w]))

Correctness Proof for Algorithm 3

« Key lemma — at the end of iteration I, for
all w, M[w] <= M[i, w];

* Reconstructing the path:

— Set P[w] = x, whenever M[w] is updated from
vertex X

If the pointer graph has a cycle, then
the graph has a negative cost cycle

 If P[w] = x then M[w] >= M[x] + cost(x,w)
— Equal when w is updated
— M[X] could be reduced after update
* Letvy,Vv,,...v,be acycle in the pointer graph
with (v,,v,) the last edge added
— Just before the update

* M[v] >= M[v,,,] + cost(v,,,, v)) for j < k Vi Vy
* I\/I[Vk] > M[Vl] + COSt(Vl, Vk)
— Adding everything up v, v,

* 0> cost(v,,Vv,) + cost(v,,Vv3) + ... + cost(v,, v,)

Negative Cycles

* If the pointer graph has a cycle, then the
graph has a negative cycle

* Therefore: If the graph has no negative
cycles, then the pointer graph has no
negative cycles

Finding negative cost cycles

« What if you want to find negative cost cycles?

v

Foreign Exchange Arbitrage

USD

A

EUR ()-

() cAD

A\

EUR O

() CAD

USD [EUR |CAD
USD |------ 0.8 |1.2
EUR 1.2 |--—---- 1.6
CAD (0.8 |0.6 |--—---

