1/28/2013

CSEP 521
Applied Algorithms
Richard Anderson

Winter 2013
Lecture 4

Announcements

Reading
— For today, sections 4.5,4.7,4.8,5.1,5.2

Interval Scheduling

Highlights from last lecture

» Greedy Algorithms
« Dijkstra’s Algorithm

&)

[£3% 4

Today

Minimum spanning trees

Applications of Minimum Spanning trees
Huffman codes

Homework solutions

Recurrences

Minimum Spanning Tree

« Introduce Problem

« Demonstrate three different greedy
algorithms

 Provide proofs that the algorithms work

Minimum Spanning Tree

1/28/2013

Greedy Algorithms for Minimum
Spanning Tree

» [Prim] Extend a tree by
including the cheapest
out going edge

» [Kruskal] Add the
cheapest edge that joins
disjoint components

» [ReverseDelete] Delete
the most expensive edge
that does not disconnect
the graph

Greedy Algorithm 1
Prim’s Algorithm

» Extend a tree by including the cheapest
out going edge

Construct the MST
with Prim’s
algorithm starting
from vertex a

Label the edges in
order of insertion

Greedy Algorithm 2
Kruskal’'s Algorithm

» Add the cheapest edge that joins disjoint
components

Construct the MST
with Kruskal's
algorithm

Label the edges in
order of insertion

Greedy Algorithm 3
Reverse-Delete Algorithm

 Delete the most expensive edge that does
not disconnect the graph

Construct the MST
with the reverse-
delete algorithm

Label the edges in
order of removal

Why do the greedy algorithms
work?

» For simplicity, assume all edge costs are
distinct

Edge inclusion lemma

» Let S be a subset of V, and suppose e =
(u, v) is the minimum cost edge of E, with
uinSandvinV-S

* e is in every minimum spanning tree of G

— Or equivalently, if e is notin T, then T is not a
minimum spanning tree

1/28/2013

e is the minimum cost edge
between S and V-S

Proof

« Suppose T is a spanning tree that does not contain e
* Add e to T, this creates a cycle

» The cycle must have some edge e, = (uy, v,) withu, in S
and v, in V-S

* T,=T-{e,} +{e}is a spanning tree with lower cost
* Hence, T is not a minimum spanning tree

Optimality Proofs

* Prim’s Algorithm computes a MST
+ Kruskal’'s Algorithm computes a MST

» Show that when an edge is added to the
MST by Prim or Kruskal, the edge is the
minimum cost edge between S and V-S
for some set S.

Prim’s Algorithm

S={} T={}
while S 1=V

choose the minimum cost edge
e=(uyv),withuin S, andvin V-S

addetoT
addvto S

Prove Prim’s algorithm computes
an MST

» Show an edge e is in the MST when it is
addedto T

Dijkstra’s Algorithm
for Minimum Spanning Trees

S={}; d[s]=0; d[v]=infinityforv!=s
While S 1=V
Choose v in V-S with minimum d[v]
AddvtoS
For each w in the neighborhood of v
d[w] = min(d[w], c(v, w))

Kruskal’'s Algorithm

LetC={vi} {va}, (vl T={}
while |IC| > 1

Lete = (u, v) with uin C;and v in C; be the
minimum cost edge joining distinct sets in C

Replace C;and C; by C; U C;
AddetoT

1/28/2013

Prove Kruskal’s algorithm
computes an MST

* Show an edge e is in the MST when it is
added to T

Reverse-Delete Algorithm

* Lemma: The most expensive edge on a
cycle is never in a minimum spanning tree

Dealing with the assumption of no
equal weight edges
* Force the edge weights to be distinct

— Add small quantities to the weights
— Give a tie breaking rule for equal weight

Application: Clustering

» Given a collection of points in an r-
dimensional space, and an integer K,
divide the points into K sets that are
closest together

edges
o
o ° o
o
o o
o o
Distance clustering Divide into 2 clusters
« Divide the data set into K subsets to o
maximize the distance between any pair of © o o
sets © © o o
—dist (S1, Sy) = min {dist(x, y) | X in S, y in Sy} o (@) (@) (@) ©
o %6 o o ©
o o
@) o o o ©
@] @] e}
@) o O @)
O @) o

1/28/2013

Divide into 3 clusters

Divide into 4 clusters

Let C={{va}, {voh. . o {vilk T={}
while |C| > K

Lete = (u, v) with uin C;and v in C; be the
minimum cost edge joining distinct sets in C

Replace C;and C; by C; U C;

O o e) O o e)
o ° © o ° ©
@) O
O O
o O O O o O O @)
© o O O © © o O @) ©
@) O
o O © o O ©
© o © o
O © o O ©)
Distance Clustering Algorithm K-clustering

Huffman Codes

» Given a set of symbols of known
frequency, encode in binary to minimize
the average length of a message

S={a b,c d} f(a)= .4 f(b)=.3 f(c)=.2, f(d)=.1

Prefix codes

* A code is a prefix code, if there is no pair
of code words X and Y, where X is a prefix
of Y

* A prefix code can be decoded with a left to
right scan

* A binary prefix code can be represented
as a binary tree

1/28/2013

Optimal prefix code

* Given a set of symbols with frequencies
for the symbols, design a prefix code with
minimum average length

* ABL(Code): Average Bits per Letter

Properties of optimal codes

The tree for an optimal code is full

If f(x) < f(y) then depth(x) = depth(y)

The two nodes of lowest frequency are at
the same level

There is an optimal code where the two
lowest frequency words are siblings

Huffman Algorithm

* Pick the two lowest frequency items

* Replace with a new item with there
combined frequencies

* Repeat until done

Correctness proof (sketch)

Lety, z be the lowest frequency letters
that are replaced by a letter w

Let T be the tree constructed by the
Huffman algorithm, and T’ be the tree
constructed by the Huffman algorithm
wheny, z are replaced by w

— ABL(T’) = ABL(T) — f(w)

Correctness proof (sketch)

Proof by induction
¢ Base case,n=2

» Suppose Huffman algorithm is correct for
n symbols

« Consider an n+1 symbol alphabet . . .

Homework problems

1/28/2013

Exercise 8, Page 109

Prove that for any c, there is a graph G such that Diag(G) = c APD(G)

Exercise 12, Page 112

* Given info of the form P, died before P;
born and P; and P, overlapped, determine
if the data is internally consistent

Programming Problem

Random out degree one graph

"lw “

Question:

What is the cycle structure as N gets
large?

How many cycles?

What is the cycle length?

Topological Sort Approach

* Run topological sort
— Determine cycles
— Order vertices on branches

 Label vertices on the cycles

« Label vertices on branches computing
cycle weight

Pointer chasing algorithm

» Label vertices with the
number of their cycle
* Pick a vertex, follow o
chain of pointers
— Until a labeled vertex is
reached
— Until a new cycle is

discovered <« @
» Follow chain of vertices
a second time to set

labels \.

1/28/2013

The code . . .

void MarkCycle(int v, int cyclelD;
CycleStructure cycles, if (cyclely] == -1) {
bool] mark, cyclelD = cycles.AddCycle();
sbyte[] cycle) { for (inta=y; al=x; a = nexta) {
if (mark[v] == true) cyclefa] = (sbyte) cyclelD;
return; cycles.AddCycleVertex(cyclelD);
}
inty=v; cycle[x] = (sbyte) cyclelD;
int x; cycles.AddCycleVertex(cyclelD);
do{ }
x=y; else
y = next[x]; cyclelD = cyclely];
mark[x] = true;
} for (int a = v; cyclefa] == -1; a = nextfa]) {
while (markly] == false); cyclefa] = (sbyte) cyclelD;

cycles.AddBranchVertex(cycleiD);
}
}

Results from Random Graphs

What is the length of the longest cycle?

How many cycles?

Recurrences

Divide and Conquer

* Recurrences, Sections 5.1 and 5.2
* Algorithms

— Counting Inversions (5.3)

— Closest Pair (5.4)

— Multiplication (5.5)

—FFT (5.6)

Divide and Conquer

Array Mergesort(Array a){

n = a.Length;
if(n<=1)
return a;

b = Mergesort(a[0 .. n/2]);
¢ = Mergesort(a[n/2+1 .. n-1]);
return Merge(b, c);

Algorithm Analysis

» Cost of Merge
 Cost of Mergesort

1/28/2013

T(n) <=2T(n/2) + cn; T(1) <=c; Recurrence Analysis
+ Solution methods

— Unrolling recurrence

— Guess and verify

— Plugging in to a “Master Theorem”

Unrolling the recurrence Substitution
Prove T(n) <=cn (log,n + 1) forn>=1

Induction:
Base Case:

Induction Hypothesis:

Unroll recurrence for
I)
A better mergesort (?) T(n) = 3T(n/3) + dn
« Divide into 3 subarrays and recursively
sort

» Apply 3-way merge

What is the recurrence?

1/28/2013

Recurrence Examples

* T(n) =2 T(n/2) + cn
—0O(n log n)

* T(n) =T(n/2) + cn
-0

* More useful facts:
—logyn = log,n / logyk
—k logn = n log k

T(n) = aT(n/b) + f(n)

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:
[r si_la bl le gl
It ul |c d |f h

AN x N matrix can be viewed as
a 2 x 2 matrix with entries that
are (N/2) x (N/2) matrices.

The recursive matrix

r=ae + bf multiplication algorithm
- + recursively multiplies the
tS_ ag+ dt;h (N/2) x (N/2) matrices and
=ce combines them using the
u=cg+dh equations for multiplying 2 x 2

matrices

Recursive Matrix Multiplication

* How many recursive calls
are made at each level?

* How much work in
combining the results?

* What is the recurrence?

What is the run time for the recursive
Matrix Multiplication Algorithm?

* Recurrence:

T(n) =4T(n/2) + cn

10

1/28/2013

T(n) = 2T(n/2) + n?

T(n) = 2T(n/2) + n12

Recurrences

* Three basic behaviors
— Dominated by initial case
— Dominated by base case
— All cases equal — we care about the depth

What you really need to know
about recurrences
» Work per level changes geometrically with
the level
* Geometrically increasing (x > 1)
— The bottom level wins
» Geometrically decreasing (x < 1)
— The top level wins
« Balanced (x = 1)
— Equal contribution

Classify the following recurrences
(Increasing, Decreasing, Balanced)
* T(n) =n+5T(n/8)

* T(n)=n+9T(n/8)
* T(n) =n2+4T(n/2)
* T(n)=nd+7T(n/2)

+ T(n) = n¥2 + 3T(n/4)

Strassen’s Algorithm

Multiply 2 x 2 Matrices:

Ir si_la bl [e gl Where:

[t ul |c d |f h| p; = (b +d)(f+q)
p=(c +d)e

F=p,+ s petp ps=a(g - h)

- M1 4 — M5 7

o=p.+p p=d(f-e)

- M3 5

) ps=(a-b)h

t=p,+ps

Pe= (c—d)(e +g)
p,= (b —d)(f+h)

U=p;+p3—p2+p7

11

1/28/2013

Recurrence for Strassen’s
Algorithms

e T(n)=7T(n/2) + cn?
* What is the runtime?

12

