CSEP 521 Applied Algorithms

Richard Anderson Winter 2013 Lecture 4

Announcements

Reading

- For today, sections 4.5, 4.7, 4.8, 5.1, 5.2

Interval Scheduling

Highlights from last lecture

- Greedy Algorithms
- Dijkstra's Algorithm

Today

- Minimum spanning trees
- Applications of Minimum Spanning trees
- Huffman codes
- Homework solutions
- Recurrences

Minimum Spanning Tree

- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

Minimum Spanning Tree Un) (red a) Graph Edges Weights

Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete
 the most expensive edge
 that does not disconnect
 the graph

Greedy Algorithm 1 Prim's Algorithm

Extend a tree by including the cheapest out going edge

Construct the MST with Prim's algorithm starting from vertex a

Label the edges in order of insertion

Greedy Algorithm 3 Reverse-Delete Algorithm

 Delete the most expensive edge that does not disconnect the graph

Construct the MST with the reverse-delete algorithm

Label the edges in order of removal

Why do the greedy algorithms work?

For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let S be a subset of V, and suppose e =
 (u, v) is the minimum cost edge of E, with
 u in S and v in V-S
- e is in every minimum spanning tree of G
 - Or equivalently, if e is not in T, then T is not a minimum spanning tree

e is the minimum cost edge between S and V-S

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge e₁ = (u₁, v₁) with u₁ in S and v₁ in V-S

- T₁ = T {e₁} + {e} is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST

 Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.

Prim's Algorithm

```
S = { }; T = { };
while S != V

choose the minimum cost edge
e = (u,v), with u in S, and v in V-S
add e to T
add v to S
```

Prove Prim's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

Let C =
$$\{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}; T = \{\}$$

while $|C| > 1$

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by C_i U C_j

Add e to T

Prove Kruskal's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Reverse-Delete Algorithm

 Lemma: The most expensive edge on a cycle is never in a minimum spanning tree

Dealing with the assumption of no equal weight edges

- Force the edge weights to be distinct
 - Add small quantities to the weights
 - Give a tie breaking rule for equal weight edges

Application: Clustering

 Given a collection of points in an rdimensional space, and an integer K, divide the points into K sets that are closest together

Distance clustering

 Divide the data set into K subsets to maximize the distance between any pair of sets

- dist
$$(S_1, S_2)$$
 = min $\{dist(x, y) \mid x \text{ in } S_1, y \text{ in } S_2\}$

Divide into 2 clusters

Divide into 3 clusters

Divide into 4 clusters

Distance Clustering Algorithm

```
Let C = \{\{v_1\}, \{v_2\}, ..., \{v_n\}\}\}; T = \{\}
while |C| > K
```

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C_i

Replace C_i and C_j by C_i U C_j

K-clustering

Huffman Codes

 Given a set of symbols of known frequency, encode in binary to minimize the average length of a message

$$S = \{a, b, c, d\}, f(a) = .4, f(b) = .3, f(c) = .2, f(d) = .1$$

Prefix codes

- 101
- A code is a prefix code, if there is no pair of code words X and Y, where X is a prefix of Y
- A prefix code can be decoded with a left to right scan
- A binary prefix code can be represented as a binary tree

Optimal prefix code

- Given a set of symbols with frequencies for the symbols, design a prefix code with minimum average length
- ABL(Code): Average Bits per Letter

Properties of optimal codes

- The tree for an optimal code is full
- If f(x) ≤ f(y) then depth(x) ≥ depth(y)
- The two nodes of lowest frequency are at the same level
- There is an optimal code where the two lowest frequency words are siblings

Huffman Algorithm

- Pick the two lowest frequency items
- Replace with a new item with there combined frequencies
- Repeat until done

Correctness proof (sketch)

- Let y, z be the lowest frequency letters that are replaced by a letter w
- Let T be the tree constructed by the Huffman algorithm, and T' be the tree constructed by the Huffman algorithm when y, z are replaced by w

$$-ABL(T') = ABL(T) - f(w)$$

Correctness proof (sketch)

- Proof by induction
- Base case, n = 2

- 0/1
- Suppose Huffman algorithm is correct for n symbols
- Consider an n+1 symbol alphabet . . .

Homework problems

Exercise 8, Page 109

Dian = N'/2

Prove that for any c, there is a graph G such that Diag(G) ≥ c APD(G)

Exercise 12, Page 112

 Given info of the form P_i died before P_j born and P_i and P_j overlapped, determine if the data is internally consistent

Programming Problem

Random out degree one graph

Question:
What is the cycle structure as N gets large?
How many cycles?
What is the cycle length?

Topological Sort Approach

- Run topological sort
 - Determine cycles
 - Order vertices on branches
- Label vertices on the cycles
- Label vertices on branches computing cycle weight

Pointer chasing algorithm

- Label vertices with the number of their cycle
- Pick a vertex, follow chain of pointers
 - Until a labeled vertex is reached
 - Until a new cycle is discovered
- Follow chain of vertices a second time to set labels

The code . . .

```
int cycleID;
if (cycle[y] == -1) {
   cycleID = cycles.AddCycle();
   for (int a = y; a = x; a = next[a]) {
       cycle[a] = (sbyte) cycleID;
       cycles AddCycleVertex(cycleID);
    cycle[x] = (sbyte) cycleID;
    cycles.AddCycleVertex(cycleID);
 else
    cycleID = cycle[y];
 for (int a = v; cycle[a] == -1; a = next[a]) {
    cycle[a] = (sbyte) cycleID;
    cycles.AddBranchVertex(cycleID);
```

Results from Random Graphs

Recurrences

Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
 - Counting Inversions (5.3)
 - Closest Pair (5.4)
 - Multiplication (5.5)
 - FFT (5.6)

Divide and Conquer

Algorithm Analysis

- Cost of Merge
- · Cost of Mergesort 4 2 calls to MS of size 1/2

 $T(n) \le 2T(n/2) + cn; T(1) \le c;$

Recurrence Analysis

- Solution methods
 - Unrolling recurrence
 - Guess and verify
 - Plugging in to a "Master Theorem"

Unrolling the recurrence

Work per Level

X # levels

Substitution

100年 こしないー

Prove $T(n) \le cn (log_2n + 1)$ for $n \ge 1$

Induction:

Base Case: 🗸

Induction Hypothesis:

$$T(n) = 27(\frac{1}{2}) + Cn$$
 $\leq 2c_{2}((log_{3}) + 1) + Cn$
 $= cn[log_{0} - 1 + 1] + Ch$
 $= cn[log_{n} + 1]$

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

$$T(n) = 3T(\frac{2}{3}) + dn$$

Unroll recurrence for T(n) = 3T(n/3) + dn

Recurrence Examples

- T(n) = 2 T(n/2) + cnO(n log n)
- T(n) = T(n/2) + cn
- More useful facts:
 - $-\log_k n = \log_2 n / \log_2 k$ $-k^{\log n} = n^{\log k}$

$$T(n) = aT(n/b) + f(n)$$

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

A N x N matrix can be viewed as a 2 x 2 matrix with entries that are (N/2) x (N/2) matrices.

The recursive matrix multiplication algorithm recursively multiplies the (N/2) x (N/2) matrices and combines them using the equations for multiplying 2 x 2 matrices

Recursive Matrix Multiplication

 How many recursive calls are made at each level?

 How much work in combining the results?

What is the recurrence?

$$T(h) = 8T(\frac{n}{2}) + cn^2$$

 $T(1) = c$

What is the run time for the recursive Matrix Multiplication Algorithm?

$$T(n) = 2T(n/2) + n^2$$

$$2 \cdot (\sqrt{2})^2$$

$$2 \cdot (\sqrt{2})^2$$

$T(n) = 2T(n/2) + n^{1/2}$

Recurrences

- Three basic behaviors
 - Dominated by initial case
 - Dominated by base case
 - All cases equal we care about the depth

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing (x > 1)
 - The bottom level wins
- Geometrically decreasing (x < 1)
 - The top level wins
- Balanced (x = 1)
 - Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

•
$$T(n) = n + 5T(n/8)$$

•
$$T(n) = n + 9T(n/8)$$

•
$$T(n) = n^2 + 4T(n/2)$$

•
$$T(n) = n^3 + 7T(n/2)$$

•
$$T(n) = n^{1/2} + 3T(n/4)$$

Strassen's Algorithm

Multiply 2 x 2 Matrices:

$$r = p_1 + p_4 - p_5 + p_7$$

$$s = p_3 + p_5$$

$$t = p_2 + p_5$$

$$u = p_1 + p_3 - p_2 + p_7$$

Where:

$$p_1 = (b + d)(f + g)$$

$$p_2 = (c + d)e$$

$$p_3 = a(g - h)$$

$$p_4 = d(f - e)$$

$$p_5 = (a - b)h$$

$$p_6 = (c - d)(e + g)$$

$$p_7 = (b - d)(f + h)$$