CSEP 521
Applied Algorithms

Richard Anderson
Winter 2013
Lecture 4

Announcements

 Reading
— For today, sections 4.5, 4.7, 4.8, 5.1, 5.2

Interval Scheduling

Highlights from last lecture

+ Greedy Algorithms
* Dijkstra’s Algorithm

Today

Minimum spanning trees

Applications of Minimum Spanning trees
Huffman codes

Homework solutions

Recurrences

Minimum Spanning Tree

* Introduce Problem

 Demonstrate three different greedy
algorithms B o

* Provide proofs that the algorithms work

Minimum Spanning Tree
Uw) ired d Grapl
Edqec Wehk

Greedy Algorithms for Minimum
Spanning Tree

« [Prim] Extend a tree by
including the cheapest

out going edge
« [Kruskal] Add the

cheapest edge that joins
disjoint components

« [ReverseDelete] Delete
the most expensive edge
that does not disconnect
the graph

Greedy Algorithm 1
Prim’'s Algorithm

« Extend a tree by including the cheapest
out going edge k.

Construct the MST
with Prim’s
algorithm starting
from vertex a

Label the edges in
order of insertion

Greedy Algorithm 3
Reverse-Delete Algorithm

* Delete the most expensive edge that does
not disconnect the graph

Construct the MST
with the reverse-
delete algorithm

Label the edges in
order of removal

Why do the greedy algorithms
work’?

* For simplicity, assume all edge costs are
distinct

Edge inclusion lemma

» Let S be a subset of V, and suppose e =
(U, v) is the minimum cost edge of E, with

uinS and vin V-S
* e IS In every minimum spanning tree of G

— QOr equivalently, feisnotin T, then T Is not a
minimum spanning tree

e is the minimum cost edge
between S and V-S

Proof

« Suppose T is a spanning tree that does not contain e
+ Addeto T, this creates a cycle

« The cycle must have some edge e, = (u,, v,) with u, In S
and v, in V-3)

« T,=T-1{e,} +{e}is a spanning tree with lower cost
* Hence, T is not a minimum spanning tree

Optimality Proofs

* Prim’s Algorithm computes a MST
» Kruskal's Algorithm computes a MST

 Show that when an edge is added to the
MST by Prim or Kruskal, the edge is the
minimum cost edge between S and V-S
for some set S.

Prim’'s Algorithm

S={} T={}
while S 1=V

choose the minimum cost edge
e=(uv),withuinS, andv in V-S

addeto T
addvto S

Prove Prim'’s algorithm computes
an MST

» Show an edge e is inthe MST when it is
added to T

\/ &

Kruskal’s Algorithm

Let C = {{vs}, {Vh . . . V3l T={) \
; O 0
while |C| > 1
Lete = (u, v)withuin C,and v in C; be the]—\

minimum cost edge joining distinct sets in C
Replace C,and G, by C, U C,
AddetoT i

Sort ¢ ER EJC@M by wWesht
Compleyra — O(fn{o&w\\

Prove Kruskal's algorithm
computes an MST

» Show an edge e is inthe MST when it is
added to T

Reverse-Delete Algorithm

 Lemma: The most expensive edge on a
cycle is never in a minimum spanning tree

Dealing with the assumption of no
equal weight edges

* Force the edge weights to be distinct
— Add small quantities to the weights

— Glive a tie breaking rule for equal weight
edges

Application: Clustering

Given a collection of points in an r-
dimensional space, and an integer K,
divide the points into K sets that are
closest together

Distance clustering

» Divide the data set into K subsets to
maximize the distance between any pair of
sets

—dist (S4, S,) = min {dist(x, y) | X INn S4, y In S5}

Divide into 2 clusters

Divide into 3 clusters

Divide into 4 clusters

Distance Clustering Algorithm

Let C = {{vq}, {Vo},- . . {viadh T={}
while |C| > K

Lete = (u, v) withuin C;and v in C; be the
minimum cost edge joining distinct sets in C

Replace C,and C; by C; U C

K-clustering

Huffman Codes

* Given a set of symbols of known
frequency, encode In binary to minimize
the average length of a message

S={a,b, cd} f(a)= 4,f(b)=.3,f(c)=.2, fid)=.1

G I pq 1+ edStL «+ 2073 1+ 4 %3
-

c o0 > Jeuloye(le\=MBL
\ » |

Od0oo

—

P —

Prefix codes O]

L O\)
« A code is a prefix code, if there is no pair

of code words X and Y, where X is a prefix
of Y

« A prefix code can be decoded with a left to
right scan

« A binary prefix code can be represented
as a binary tree t;/ r

Optimal prefix code

» Given a set of symbols with frequencies
for the symbols, designh a prefix code with
minimum average length

« ABL(Code): Average Bits per Letter

Properties of optimal codes

/+ The tree for an optimal code is full /\l

J:..J.Lf(x) < f(y) then depth(x) = depth(y)
* The two nodes of lowest frequency are at
the same level

* There Is an optimal code where the two
lowest frequency words are siblings

7
N
/f' N

Huffman Algorithm

* Pick the two lowest frequency items

* Replace with a new item with there
combined frequencies
\ o/\

» Repeat until done

Q = e 9 ~7 -

Correctness proof (sketch)

* Lety, z be the lowest frequency letters
that are replaced by a letter w

» Let T be the tree constructed by the
Huffman algorithm, and T be the tree
constructed by the Huffman algorithm
wheny, z are replaced by w

— ABL(T’) = ABL(T) — f(w) }\

Correctness proof (sketch)

Proof by induction 0 / '
Base case, n =2 \\

Suppose Huffman algorithm is correct for
n symbols

Consider an n+1 symbol alphabet . . .

H"-l(—(m Rgfbc,.f_f hj;; b‘i w
Comparee, T/ - ophinmel .

Twee T —
ARL(T\= PRL(TD+ €

Homework problems

\/
Exercise 8, Page 109 Diww = N ”

Prove that for any c, there is a graph G such that Diag(G) z ¢ APD(G)

K = Vs

Exercise 12, Page 112

* Given info of the form P, died before P,
born and P; and P, overlapped, determine
iIf the data is internally consistent

)Y 3,’{.} ht(:'utl LN B D 2
Q)ied bebuwe < " g . BD&C‘

b— adl’]
A ::-J " i ved at
faw Some +Hina

ELA_ A Tﬂ {po \ﬂﬁlj'ruﬁ(SC) e

Programming Problem

Random out degree one graph

'2" T
l.(

——

:-*S KQ

‘ iuestion:

YWhat 15 the oycle structure as M gets

large?
Howe many cycles??
YWhat is the ¢ycle length?

Topological Sort Approach

* Run topological sort
— Determine cycles
— Order vertices on branches

» Label vertices on the cycles

» Label vertices on branches computing
cycle weight

Pointer chasing algorithm
lv

- Label vertices with the ®
number of their cycle 'f

« Pick a vertex, follow V| ¥
chain of pointers \@ >

— Until a labeled vertex is ﬂ‘
reached

— Until a new cycle is

discovered :‘(___. 1!
+ Follow chain of vertices ®
a second time to set
labels ¢ I »

The code . ..

wioid MarkCycleling v, int cyclell,
Cyclestructure cycles, If (cyclely] ==-1 4
biool[] mark, cyclelD = cycles. AddCycle(),
shyte[] cycle) | far{inta=v, a = x a = next[a]){
It (rnark]v] == true) cyrle[a] = (shyte) cyclelD,
Feturm; oyt les AddCyclevertexicycl el D,
I
Ity =, cycle[x] = (shyte) cyclell,
it CyCles AddCylevertex cyclel D),
do | }
A=, else
y = next[x]; cyClelD = cyclely),
mark]x] = true,
] far (int a = v, cyclela) == -1, a = next[a]) {
wihile (rmarky] == false); cycle[a] = (shyte) cyclelD;

cycles AddbBranchyvertexicyclel D),
j

Results from Random Graphs

What is the length of the longest cycle? ﬂ n
1 O '#ﬂ (1) e

—
® g
",ﬂ

U
How many cycles?

Recurrences

Divide and Conquer

* Recurrences, Sections 5.1 and 5.2

» Algorithms -
— Counting Inversions (5.3)
— Closest Pair (5.4)
— Multiplication (5.9)
—FFT (5.6)

e

Divide and Conquer

BsAamE

& Mergesort(Array a){ M ‘
< n =a.Length; Mé
i (n <= 1) - >
o return a; M Lwl‘(

b = Mergesort(a[0 .. n/2]);
¢ = Mergesort(a[n/2+1 .. n-1]);

€ return Merge(b, CLQ_O(n)
o

Algorithm Analysis

» Cost of Merge O (n)
. Cost of Mergesort 4— 72 ca\\g

M 6 size "/Z

T(n) <= 2T(n/2) + cn; T(1) <= ¢;

Recurrence Analysis

» Solution methods
— Unrolling recurrence
— Guess and verify
— Plugging in to a *Master Theorem’

Tlay = PTUTNVEN (Jwe pe Leve\

Unrolling the recurrence % * levels,

A C
I AL N
CEE; — A
& S
A EW
gﬂ__,...—*
€
|

Substitution W

Prove T(n) <=cn (log,n + 1) for n >= 1

e

Induction: \
Base Case. ,}K LA
e 1032 < N

Induction Hypothesis:

A better mergesort (?)

* Divide Into 3 subarrays and recursively
sort

* Apply 3-way merge

TThY = 3T(%\+&V\

What is the recurrence?

Unroll recurrence for
T(n) =3T(n/3) + dn

Recurrence Examples

» T(n)=2 T(n/2) + cn
— O(n log n)
« T(n)=T(n/2) + cnh

—om

 More useful facts:
— logyn = log,n / log,k
— klogn = n logk

T(n) = aT(n/b) + f(n)

Recursive Matrix Multiplication

Multiply 2 x 2 Matrif:es'
L S| ~_l
| t

U d | |

r=ae + bf
s=ag + bh
t=ce +df

u=rcg+dh

AN x N matrix can be viewed as
a 2 x 2 matrix with entries that
are (N/2) x (N/2) matrices.

The recursive matrix
multiplication algorithm
recursively multiplies the
(M/2) % (Nf2) matrices and

combines them using the
equations for multiplying 2x 2
matrices

nly
'_.,f-] - il
’
%

——

Recursive Matrix Multiplication

« How many recursive calls %
are made at each level?

» How much work in O (U\L\

combining the results?

« \What Is the recurrence?

What is the run time for the recursive

Matrix Multiplication Algorithm?
Ly O(n?®)

« Recurrence:

T(n)- 8 7(2\rn*

T(n) =4T(n/2) + cn

CW
(4]
4y 2 C
/\ -
b = ()
R R A
€
f_:-"—-—_.
[6 ¢

T(n) = 2T(n/2) + n12
(o

Recurrences

* Three basic behaviors
— Dominated by Initial case
— Dominated by base case
— All cases equal — we care about the depth

What you really need to know
about recurrences

Work per level changes geometrically with
the level

Geometrically increasing (x > 1)
— The bottom level wins

Geometrically decreasing (x < 1)
— The top level wins

Balanced (x = 1)
— Equal contribution

Classify the following recurrences
(Increasing, Decreasing, Balanced)
+ T(n) = n +5T(n/8) .

"

L AR

mn
* T(n)=n+9T(n/8) e
e ec—————— 1.
e T(n) = N2+ 4T(n/2) 8
« T(n)=n3+7T(n/2) T(n) =N »gT?\

« T(n) =n'"2+ 3T(n/4)

Strassen’s Algorithm

.33
O(nt*)
Multiply 2 x 2 Matrices: T —
it s|_la b Je gl ere:
|t ul |c d |[f h D, = (b + d)(f+ 9)
D= (C + d)e
F=pi+pPs—PpPst+p gl
17 B B 0= d(f— e)
S=P3+Ps
D= (a — b)h
t=p;+ps
:}5=(C—d)(e+g)

U=p;+Ps—P+p
L p,= (b — d)(f + h)

