CSEP 521
Applied Algorithms

Richard Anderson
Winter 2013
Lecture 4

Announcements

* Reading

Interval Scheduling

Highlights from last lecture

» Greedy Algorithms
* Dijkstra’s Algorithm

Today

Minimum spanning trees

Applications of Minimum Spanning trees
Huffman codes

Homework solutions

Recurrences

Minimum Spanning Tree

* Introduce Problem

 Demonstrate three different greedy
algorithms

* Provide proofs that the algorithms work

Minimum Spanning Tree

Greedy Algorithms for Minimum
Spanning Tree

« [Prim] Extend a tree by
Including the cheapest
out going edge

» [Kruskal] Add the
cheapest edge that joins
disjoint components

* [ReverseDelete] Delete
the most expensive edge
that does not disconnect
the graph

Greedy Algorithm 1
Prim’s Algorithm

« Extend a tree by including the cheapest
out going edge

Construct the MST
with Prim’s
algorithm starting
from vertex a

Label the edges in
order of insertion

Greedy Algorithm 2
Kruskal's Algorithm

* Add the cheapest edge that joins disjoint
components

Construct the MST
with Kruskal’s
algorithm

Label the edges in
order of insertion

Greedy Algorithm 3

Reverse-Delete Algorithm

* Delete the most expensive edge t

not disconnect the graph

Construct the MST
with the reverse-
delete algorithm

Label the edges in
order of removal

nat does

Why do the greedy algorithms
work?

* For simplicity, assume all edge costs are
distinct

Edge inclusion lemma

* Let S be a subset of V, and suppose e =
(U, v) Is the minimum cost edge of E, with
uin SandvinV-S

* e IS In every minimum spanning tree of G

— Or equivalently, ifeisnotin T, then T is not a
minimum spanning tree

e is the minimum cost edge
between S and V-S

Proof

e Suppose T is a spanning tree that does not contain e
« Add eto T, this creates a cycle

* The cycle must have some edge e; = (U, V{) With u; In S
and v, in V-S

« T,=T-{e,} +{e}is a spanning tree with lower cost
 Hence, T is not a minimum spanning tree

Optimality Proofs

* Prim’s Algorithm computes a MST
» Kruskal’s Algorithm computes a MST

« Show that when an edge is added to the
MST by Prim or Kruskal, the edge Is the
minimum cost edge between S and V-S
for some set S.

Prim’s Algorithm

S={} T={}
while S 1=V

choose the minimum cost edge
e=(uVv),withuinS,andvinV-S

addetoT
addvto S

Prove Prim’s algorithm computes
an MST

 Show an edge e is in the MST when it Is
addedto T

Dijkstra’s Algorithm
for Minimum Spanning Trees

S={}; d[s]=0; d[v]=infinityforv!=s
While S 1=V
Choose v in V-S with minimum d[v]
Addvto S
For each w in the neighborhood of v
d[w] = min(d[w], c(v, w))

Kruskal's Algorithm

Let C = {{v,}, {vo}, . . ., {vi}li T={}
while |C| > 1

Lete = (u, v) with uin C; and v in C; be the
minimum cost edge joining distinct sets in C

Replace C;and C; by C; U C,
AddetoT

Prove Kruskal's algorithm
computes an MST

 Show an edge e is in the MST when it Is
addedto T

Reverse-Delete Algorithm

« Lemma: The most expensive edge on a
cycle Is never In a minimum spanning tree

Dealing with the assumption of no
equal weight edges

* Force the edge weights to be distinct
— Add small quantities to the weights

— Give a tie breaking rule for equal weight
edges

Application: Clustering

* Given a collection of points in an r-
dimensional space, and an integer K,
divide the points into K sets that are
closest together

Distance clustering

* Divide the data set into K subsets to
maximize the distance between any pair of
sets

—dist (S4, S,) = min {dist(x, y) | X In S;, y In S,}

Divide Iinto 2 clusters

QOQ
O
O O
O O O
O O O
O
O
O 0
O

Divide into 3 clusters

QOQ
O
O O
O O O
O O O
O
O
O 0
O

Divide into 4 clusters

QOQ
O
O O
O O O
O O O
O
O
O 0
O

Distance Clustering Algorithm

Let C = {{vi}, {Vvo},- - i {vidh T={}
while |C| > K

Lete = (u, v) with uin C; and v in C; be the
minimum cost edge joining distinct sets in C

Replace C;and C; by C; U C,

K-clustering

Huffman Codes

* Given a set of symbols of known
frequency, encode Iin binary to minimize
the average length of a message

S={a, b, c, d}, fa)=.4,f(b)=.3,f(c) = .2, f(d)=.1

Prefix codes

* A code Is a prefix code, if there is no pair
of code words X and Y, where X Is a prefix
of Y

* A prefix code can be decoded with a left to
right scan

* A binary prefix code can be represented
as a binary tree

Optimal prefix code

* Given a set of symbols with frequencies
for the symbols, design a prefix code with
minimum average length

 ABL(Code): Average Bits per Letter

Properties of optimal codes

The tree for an optimal code is full
If f(x) < f(y) then depth(x) = depth(y)

The two nodes of lowest frequency are at
the same level

There Is an optimal code where the two
lowest frequency words are siblings

Huffman Algorithm

* Pick the two lowest frequency items

* Replace with a new item with there
combined frequencies

* Repeat until done

Correctness proof (sketch)

* Lety, z be the lowest frequency letters
that are replaced by a letter w

* Let T be the tree constructed by the
Huffman algorithm, and T be the tree
constructed by the Huffman algorithm
wheny, z are replaced by w

— ABL(T’) = ABL(T) — f(w)

Correctness proof (sketch)

Proof by induction
Base case,n=2

Suppose Huffman algorithm is correct for
n symbols

Consider an n+1 symbol alphabet . . .

Homework problems

Exercise 8, Page 109

Prove that for any c, there is a graph G such that Diag(G) = c APD(G)

Exercise 12, Page 112

» Given info of the form P; died before P,
born and P; and P; overlapped, determine
If the data Is Iinternally consistent

Programming Problem

Random out degree one graph

Question:

What is the cycle structure as N gets

large?

How many cycles?
“ What is the cycle length?

Topological Sort Approach

* Run topological sort
— Determine cycles
— Order vertices on branches

* Label vertices on the cycles

» Label vertices on branches computing
cycle weight

Pointer chasing algorithm

 Label vertices with the ®
number of their cycle

* Pick a vertex, follow

chain of pointers 1‘. 5
— Until a labeled vertex is

reached
— Until a new cycle is

discovered ‘(

'
* Follow chain of vertices
a second time to set \
labels \‘

The code . ..

void MarkCycle(int v, int cyclelD;
CycleStructure cycles, if (cycle[y] ==-1) {
bool[] mark, cyclelD = cycles.AddCycle();
sbyte[] cycle) { for (inta =y; a!=x; a = next[a]) {
if (mark[v] == true) cycle[a] = (sbyte) cyclelD;
return; cycles.AddCycleVertex(cyclelD);
}
inty=v; cycle[x] = (sbyte) cyclelD;
int x; cycles.AddCycleVertex(cyclelD);
do { }
X=Y; else
y = next[Xx]; cyclelD = cyclely];
mark[x] = true;
} for (int a = v; cycle[a] == -1; a = next[a]) {
while (mark[y] == false); cycle[a] = (sbyte) cyclelD;

cycles.AddBranchVertex(cyclelD);
}

Results from Random Graphs

What is the length of the longest cycle?

How many cycles?

Recurrences

Divide and Conquer

 Recurrences, Sections 5.1 and 5.2

 Algorithms
— Counting Inversions (5.3)
— Closest Pair (5.4)
— Multiplication (5.5)
— FFT (5.6)

Divide and Conquer

Array Mergesort(Array a){

n = a.Length;
if (n<=1)
return a;

b = Mergesort(a[0 .. n/2));
¢ = Mergesort(a[n/2+1 .. n-1]);

return Merge(b, c);

Algorithm Analysis

» Cost of Merge
» Cost of Mergesort

T(n) <= 2T(n/2) + cn; T(1) <= c;

Recurrence Analysis

» Solution methods
— Unrolling recurrence
— Guess and verify
— Plugging in to a "Master Theorem”

Unrolling the recurrence

Substitution

Prove T(n) <=cn (log,n + 1) forn >=1

Induction:
Base Case:

Induction Hypothesis:

A better mergesort (?)

* Divide Into 3 subarrays and recursively
sort

* Apply 3-way merge

What is the recurrence?

Unroll recurrence for
T(n) =3T(n/3) + dn

Recurrence Examples

« T(N) =2 T(n/2) +cn
— O(n log n)

« T(nN) =T(n/2) + cn
— O(n)

 More useful facts:
—log,n = log,n / log,k
_klogn =n log k

T(n) = aT(n/b) + f(n)

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices: A N x N matrix can be viewed as
lr s| |a Db] |e g a 2 x 2 matrix with entries that
It u|l |c d| |f h are (N/2) x (N/2) matrices.

The recursive matrix
r = ae + bf multiplication algorithm
— recursively multiplies the
tS: cfleg: d‘?ch (N/2) x (N/2) matrices and
combines them using the
u=cg+dh equations for multiplying 2 x 2
matrices

Recursive Matrix Multiplication

How many recursive calls
are made at each level?

How much work in
combining the results?

What is the recurrence?

What is the run time for the recursive
Matrix Multiplication Algorithm?

e Recurrence:

T(n) =4T(n/2) + cn

T(n) = 2T(n/2) + n?

T(n) = 2T(n/2) + n1/2

Recurrences

* Three basic behaviors
— Dominated by initial case
— Dominated by base case
— All cases equal — we care about the depth

What you really need to know
about recurrences

Work per level changes geometrically with
the level

Geometrically increasing (x > 1)
— The bottom level wins

Geometrically decreasing (x < 1)
— The top level wins

Balanced (x = 1)
— Equal contribution

Classify the following recurrences
(Increasing, Decreasing, Balanced)
 T(n) =n+ 5T(n/8)

« T(n) =n+ 9T(n/8)
* T(n) = n?+4T(n/2)
« T(n) =n3+7T(n/2)

* T(n) =n'2+ 3T(n/4)

Strassen’s Algorithm

Multiply 2 x 2 Matrices:

Ir s|_la b| e gl Where:
It ul |c d|l |f h 0, = (b + d)(f + g)
p,= (c +d)e
F= D, 4, pe+ P pPs=a(g — h)
- M1 4 — M5 V4
St p,= d(f - €)
- M3 5
ps= (a — b)h
t=p, +ps

pe= (C —d)(e + g)

U=p;+Ps—pP+P;
p,= (b —d)(f+h)

Recurrence for Strassen’s
Algorithms

 T(n) =7 T(n/2) + cn?
 What Is the runtime?

