CSEP 521
Applied Algorithms

Richard Anderson
Winter 2013
Lecture 2

Announcements

» Reading
— Chapter 2.1, 2.2
— Chapter 3
— Chapter 4

 Homework Guidelines
— Prove that your algorithm works
« A proofis a “convincing argument”
— Give the run time for you algorithm
« Justify that the algorithm satisfies the runtime bound

— You may lose points for style

Announcements

 Monday, January 21 is a holiday

— No class
* Makeup lecture, Thursday, January 17,
(5:00 pm — 6:30 pm —_—

— UW and Microsoft
— View off line If you cannot attend

» Homework 2 Is due January 21
— Electronic turn in only

What does it mean for an algorithm
to be efficient?

Definitions of efficiency

* Fast in practice

» Qualitatively better worst case
performance than a brute force algorithm

Polynomial time efficiency

» An algorithm is efficient if it has a
polynomial run time

* Run time as alunction of problem size
— Run time: count number oT1 |

executed on an underlying model of
computation

— T(n): maximum run time for all problems of
size at most n

Polynomial Time
\._‘________________..-"'_'

» Algorithms with polynomial run time have
the property that increasing the problem
size by a constant factor increases the run
time by at most a constant factor

(depending on the algorithm)

I

Why Polynomial Time?
« Generally, polynomial time seems to

capture the algorithms which are efficient
In practice

* The class of polynomial time algorithms
has m:':‘u{gnnd, mathematical properties

A o

7

Polynomial vs. Exponential
Complexity

« Suppose you have an algorithm which takes nl
steps on a problem of size n -

 If the algorithm takes one second for a problem
e ————

of size 10, estimate the run time for the following
problems sizes:

12 14 16 18 20
L (W o 5040 Zoao yrs

lgnoring constant factors

Express run time as O(f(n))

Emphasize algorithms with slower growth
rates

Fundamental idea in the study of
algorithms

Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?

» Constant factors are arbitrary
— Depend on the implementation
— Depend on the details of the model

» Determining the constant factors is tedious
and provides little insight

Why emphasize growth rates?

» The algorithm with the lower growth rate
will be faster for all but a finite number of
cases

» Performance is most important for larger
problem size

* As memory prices continue to fall, bigger
problem sizes become feasible

* Improving growth rate often requires new
techniques

Formalizing growth rates

. T(n) is O(f(n)) T:Z* > R*]
— If nIs sufficiently large, T(n) Is bounded by a
constant multiple of f(n)

— EXist ¢, ng, such that for n > ng, T(n) < ¢ f(n)

'-'_..-"' e

* T(n)Is O(f(n)) will be written as:
T(n) = O(f(n))

— Be careful with this notation

Prove 3n2 + 5n + 20 is O(n?)

showd ZutySu%20 £ on”
Letc= (¢ 82F

Letn, = 4 3 *z,_t,;“.no

T(n) is O(f(n)) if there exist ¢, ny, such that for n > ny,
T(n) < c f(n)

Order the following functions in
Increasing order by their growth rate

a) RAog*n 1000 log"

b) 216N n'™

c) 2n/100 _ 1000w r(oj!th

d) 1000x_+Jog® n '

) W - W s

f) o L 9V
-~ g) 1Q08dogion n'%°

h) A 2'n'w’ntiﬂ

[Y

J

nZ+3» = (1 (n)
Lower bounds
nZ4 2ulogn = &(n*)
* T(n) is Q(f(n))
— T(n) Is at least a constant multiple of f(n)

— There exists an ny, and € > 0 such that
T(n) > ef(n) for all n > Ng

» \Warning: definitions of €2 vary

* T(n) Is @(f(n)) If T(n) Is O(f(n)) and
T(n) is €2(f(n))

Useful Theorems

* If lim (f(n) / g(n)) = ¢ for ¢ > 0 then
f(n) = ®(g(n))

——

e

« [If f(n) is O(g(n)) and g(n) is O(h(n)) then
f(n) Is O(h(n))

» If f(n) is O(h(n)) and g(n) is O(h(n)) then
f(n) + g(n) 1s O(h(n))

Ordering growth rates

e Forb>1and x>0
— logbn is O(nX)

— —

e Forr>1andd>0
—n9is O(r"

l——...____‘_

Stable Matching

Reported Results

Stanislav
Andy
Boris

Huy

Hans
Vijayanand
Robert
Zain

Uzair
Anand

10,000
4,096
5,000

10,000

10,000
1,000

20,000
2,825
8,192

10,000

9.96
8.77
10.06
10.68
9.59
8.60

12.40
8.61

9.10
9.58

1020
472
499
969

1046
114

1698
331
883

1045

10159
4139
2020

10349

10031

980

21055
2850
8035

10011

Why is M/n ~ log n? "
while vwmmarhed w Z. T
oose ™ — d
M - Pr:.rk& W -
2%
; X Ir : kX
F TR

Why i1s W/in ~n/logn?

Ms purose Alogn Hien

Cack \,) fecites (oj e
pro gsals:
3%

—

1

BEN

|

Graph Theory

Graph Theory

G=(V, E)

— V —vertices “’l':' ﬂ
—E-edges || =M
Undirected graphs

— Edges sets of two vertices {_L_l_’f_}
Directed graphs

— Edges ordered pairs M)

Many other flavors

— Edge / vertices weights
— Parallel edges
— Self loops

Path: v,, v,
— Simple Path
— Cycle

— Simple Cycle
Distance
Connectivity
— Undirected

Definitions

o Vi, WIEh (Vi Vig) INE /,.ﬂ

o
Q-""’a/‘f

— Directed (strong connectivity)

Trees

— Rooted
— Unrooted

X,
SN

Graph search 5

* Find a path fromstot

While ttuere exists (U, ViinEwithuinSandvnotin S
———— I e

Pred[v] =u
Addvto S
if (v =1) then path found

Breadth first search

» Explore vertices In layers
—s in layer 1
— Neighbors of s In layer 2

— Neighbors of layer 2 In layer 3 . . .

Y g

U

Key observation

» All edges go between vertices on the
same layer or adjacent layers

Bipartite Graphs

A graphV is bipartite if V can be
partitioned into V,, V, such that all edges
go between V, and V,

» A graph is bipartite If it c%‘n be two colored
9

Can this graph be two colored?

Algorithm

Run BFS

COlOITE.‘Ed layers red, even layers blue

If no edges between the same layer, the}
graph is bipartite

If edge between two vertices of the same
layer, then there is an odd cycle, and the
graph is not bipartite

Theorem: A graph Is bipartite If and
only If it has no odd cycles

Gmfk Wearh 093 c%dﬁ
-:_7 @rep\~ D wet b er"ou

Ors Wi o pdd cqle
= Geoph 13 o

Lemma 1

 |f a graph contains an odd cycle, it is not
bipartite o

K
R

a
ool

Lemma 2

» If a BFS tree has an infra-level edge, then
the graph has an odd length cycle

di-
/ /

2¥x\ (259

Intra-level edge: both end points are in the same level

Lemma 3

 |f a graph has no odd length cycles, then it
IS bipartite

Connected Components

» Undirected Graphs

Computing Connected
Components in O(n+m) time
—
» A search algorithm from a vertex v can find

all vertices in v's component

* \While there Is an unvisited vertex v, search
from v to find a new component

Directed Graphs

» A Strongly Connected Componentis a
subset of the vertices with paths between
every pair of vertices.

|dentify the Strongly Connected

00 G

Strongly connected components
can be found in O(n+m) time

« But it's tricky!
« Simpler problem: given a vertex v, compute the
vertices in v’'s scc in O(n+m) time E) ? 5

S ﬁ“ Jgewrhiae v Cann vewdn

s
Y e each V ’F-EHW‘" (3!»

IR

Topological Sort

* Given a set of tasks with precedence
constraints, find a linear order of the tasks

@—b
.—»%ﬁ
-

Find a topological order for the

ollowing graph
H E y Evly O

If a graph has a cycle, there Is no
topological sort

« Consider the first
vertex on the cycle In a g
the topological sort

* |t must have an

iIncoming edge \

e ——@

Lemma: If a graph is acyclic, it has
a vertex with in degree 0

* Proof:

— Pick a vertex v, if it has in-degree 0 then
done

— If not, let (v, v4) be an edge, if v, has in-
degree 0 then done

— If not, let (vs, v,) be an edge . . .

— If this process continues for more than n
steps, we have a repeated vertex, so we have
a cycle

A

ﬁn‘f‘ H, T\ &
Topological Sort Algorithm

While there exists a vertex v with in-degree 0
Output vertex v

Delete the vertex v and all out going edges

Y R
\
\ \@/ \O

\ e
s

Details for O(n+m) implementation

Maintain a list of vertices of in-degree O

—

Each vertex keeps track of its in-degree

Update in-degrees and list when edges
are removed

m edge removals at O(1) cost each

Nz 109, 000,00
Random out degree one graph

/Q\ NS !

|

S

‘ (—-—-—. Ciuestion:

YWhat 15 the oycle structure as M gets
large?

Howe many cycles??

YWhat is the ¢ycle length?

#

};%

Greedy Algorithms

