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Announcements

» Reading
— Chapter 2.1, 2.2
— Chapter 3
— Chapter 4

 Homework Guidelines
— Prove that your algorithm works
« A proofis a “convincing argument”
— Give the run time for you algorithm
« Justify that the algorithm satisfies the runtime bound

— You may lose points for style




Announcements

 Monday, January 21 is a holiday

— No class
* Makeup lecture, Thursday, January 17,
(5:00 pm — 6:30 pm —_—

— UW and Microsoft
— View off line If you cannot attend

» Homework 2 Is due January 21
— Electronic turn in only



What does it mean for an algorithm
to be efficient?



Definitions of efficiency

* Fast in practice

» Qualitatively better worst case
performance than a brute force algorithm



Polynomial time efficiency

» An algorithm is efficient if it has a
polynomial run time

* Run time as alunction of problem size
— Run time: count number oT1 |

executed on an underlying model of
computation

— T(n): maximum run time for all problems of
size at most n



Polynomial Time
\._‘________________..-"'_'

» Algorithms with polynomial run time have
the property that increasing the problem
size by a constant factor increases the run
time by at most a constant factor

(depending on the algorithm)
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Why Polynomial Time?
« Generally, polynomial time seems to

capture the algorithms which are efficient
In practice

* The class of polynomial time algorithms
has m:':‘u{gnnd, mathematical properties
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Polynomial vs. Exponential
Complexity

« Suppose you have an algorithm which takes nl
steps on a problem of size n -

 If the algorithm takes one second for a problem
e ————

of size 10, estimate the run time for the following
problems sizes:

12 14 16 18 20
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lgnoring constant factors

Express run time as O(f(n))

Emphasize algorithms with slower growth
rates

Fundamental idea in the study of
algorithms

Basis of Tarjan/Hopcroft Turing Award




Why ignore constant factors?

» Constant factors are arbitrary
— Depend on the implementation
— Depend on the details of the model

» Determining the constant factors is tedious
and provides little insight



Why emphasize growth rates?

» The algorithm with the lower growth rate
will be faster for all but a finite number of
cases

» Performance is most important for larger
problem size

* As memory prices continue to fall, bigger
problem sizes become feasible

* Improving growth rate often requires new
techniques



Formalizing growth rates

. T(n) is O(f(n)) T:Z* > R*]
— If nIs sufficiently large, T(n) Is bounded by a
constant multiple of f(n)

— EXist ¢, ng, such that for n > ng, T(n) < ¢ f(n)
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* T(n)Is O(f(n)) will be written as:
T(n) = O(f(n))

— Be careful with this notation



Prove 3n2 + 5n + 20 is O(n?)

showd  ZutySu%20 £ on”
Letc= ( ¢ 82F

Letn, = 4 3 *z,_t,;“.no

T(n) is O(f(n)) if there exist ¢, ny, such that for n > ny,
T(n) < c f(n)



Order the following functions in
Increasing order by their growth rate

a) RAog*n 1000 log"

b) 216N n'™

c) 2n/100 _ 1000w r(oj!th

d) 1000x_+Jog® n '
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h) A 2'n'w’ntiﬂ

[ Y

J



nZ+3» = (1 (n)
Lower bounds
nZ4 2ulogn = &(n*)
* T(n) is Q(f(n))
— T(n) Is at least a constant multiple of f(n)

— There exists an ny, and € > 0 such that
T(n) > ef(n) for all n > Ng

» \Warning: definitions of €2 vary

* T(n) Is @(f(n)) If T(n) Is O(f(n)) and
T(n) is €2(f(n))



Useful Theorems

* If lim (f(n) / g(n)) = ¢ for ¢ > 0 then
f(n) = ®(g(n))

——

e

« [If f(n) is O(g(n)) and g(n) is O(h(n)) then
f(n) Is O(h(n))

» If f(n) is O(h(n)) and g(n) is O(h(n)) then
f(n) + g(n) 1s O(h(n))



Ordering growth rates

e Forb>1and x>0
— logbn is O(nX)

— —

e Forr>1andd>0
—n9is O(r"
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Stable Matching



Reported Results
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Why is M/n ~ log n? "
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Why i1s W/in ~n/logn?
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Graph Theory



Graph Theory

G=(V, E)

— V —vertices “’l':' ﬂ
—E-edges || =M
Undirected graphs

— Edges sets of two vertices {_L_l_’f_}
Directed graphs

— Edges ordered pairs M)

Many other flavors

— Edge / vertices weights
— Parallel edges
— Self loops




Path: v,, v,
— Simple Path
— Cycle

— Simple Cycle
Distance
Connectivity
— Undirected

Definitions

o Vi, WIEh (Vi Vig) INE /,.ﬂ

o
Q-""’a/‘f

— Directed (strong connectivity)

Trees

— Rooted
— Unrooted

X,
SN



Graph search 5

* Find a path fromstot

While ttuere exists (U, ViinEwithuinSandvnotin S
———— I e

Pred[v] =u
Addvto S
if (v =1) then path found



Breadth first search

» Explore vertices In layers
—s in layer 1
— Neighbors of s In layer 2

— Neighbors of layer 2 In layer 3 . . .
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Key observation

» All edges go between vertices on the
same layer or adjacent layers




Bipartite Graphs

A graphV is bipartite if V can be
partitioned into V,, V, such that all edges
go between V, and V,

» A graph is bipartite If it c%‘n be two colored
9




Can this graph be two colored?




Algorithm

Run BFS

COlOITE.‘Ed layers red, even layers blue

If no edges between the same layer, the}
graph is bipartite

If edge between two vertices of the same
layer, then there is an odd cycle, and the
graph is not bipartite



Theorem: A graph Is bipartite If and
only If it has no odd cycles
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Lemma 1

 |f a graph contains an odd cycle, it is not
bipartite o
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Lemma 2

» If a BFS tree has an infra-level edge, then
the graph has an odd length cycle

di-
/ /
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Intra-level edge: both end points are in the same level



Lemma 3

 |f a graph has no odd length cycles, then it
IS bipartite



Connected Components

» Undirected Graphs




Computing Connected
Components in O(n+m) time
—
» A search algorithm from a vertex v can find

all vertices in v's component

* \While there Is an unvisited vertex v, search
from v to find a new component



Directed Graphs

» A Strongly Connected Componentis a
subset of the vertices with paths between
every pair of vertices.




|dentify the Strongly Connected

00 G




Strongly connected components
can be found in O(n+m) time

« But it's tricky!
« Simpler problem: given a vertex v, compute the
vertices in v’'s scc in O(n+m) time E) ? 5
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Topological Sort

* Given a set of tasks with precedence
constraints, find a linear order of the tasks
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Find a topological order for the

ollowing graph
H E y Evly O




If a graph has a cycle, there Is no
topological sort

« Consider the first
vertex on the cycle In a g
the topological sort

* |t must have an

iIncoming edge \

e ——@




Lemma: If a graph is acyclic, it has
a vertex with in degree 0

* Proof:

— Pick a vertex v, if it has in-degree 0 then
done

— If not, let (v, v4) be an edge, if v, has in-
degree 0 then done

— If not, let (vs, v,) be an edge . . .

— If this process continues for more than n
steps, we have a repeated vertex, so we have
a cycle



A

ﬁn‘f‘ H, T\ &
Topological Sort Algorithm

While there exists a vertex v with in-degree 0
Output vertex v

Delete the vertex v and all out going edges
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Details for O(n+m) implementation

Maintain a list of vertices of in-degree O

—

Each vertex keeps track of its in-degree

Update in-degrees and list when edges
are removed

m edge removals at O(1) cost each






Nz 109, 000,00
Random out degree one graph
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‘ (—-—-—. Ciuestion:

YWhat 15 the oycle structure as M gets
large?

Howe many cycles??

YWhat is the ¢ycle length?
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Greedy Algorithms



