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CSEP 521 

Applied Algorithms 

Richard Anderson    

Winter 2013 

Lecture 1 

CSEP 521 Course Introduction 

• CSEP 521, Applied Algorithms 
– Monday’s, 6:30-9:20 pm 

– CSE 305 and Microsoft Building 99 

• Instructor 
– Richard Anderson, anderson@cs.washington.edu 

– Office hours:  
• CSE 582 

• Monday, 4:00-5:00 pm or by appointment 

• Teaching Assistant  
– Tanvir Aumi, tanvir@cs.washington.edu 

– Office hours:  
• TBD 

Announcements 

• It’s on the web. 

• Homework  due at start of class on 

Mondays 

– HW 1, Due January 14, 2013 

– It’s on the web  

 

 

http://www.cs.washington.edu/education/courses/csep521/13wi/ 

 

Text book 

• Algorithm Design 

• Jon Kleinberg, Eva Tardos 

 

• Read Chapters 1 & 2 

 

• Expected coverage: 

– Chapter 1 through 7 

 

Recorded lectures 

• This is a distance course, so lectures are 
recorded and will be available on line for later 
viewing 

• However, low attendance in the distance 
PMP course is a concern 
– Various draconian measures are under 

discussion 

• We will make lectures available  
– Please attend class, and participate 

– Participation may be a component of the class 
grade 

Lecture schedule 

• Monday holidays: 
– Monday, January 21,  MLK 

– Monday,  February 18,  President’s day 

• Make up lectures will be scheduled,  which 
will be recorded for offline viewing  
– Hopefully, some students will attend, so there is a 

studio audience 

– First makeup lecture:  
• Thursday,  January 17,  5:00-6:30 pm 

• Additional makeup lectures to accommodate 
RJA’s travel schedule 

mailto:anderson@cs.washington.edu
mailto:tanvir@cs.washington.edu
http://www.cs.washington.edu/education/courses/csep521/13wi/
http://www.cs.washington.edu/education/courses/csep521/13wi/
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Course Mechanics 

• Homework 
– Due Mondays 

– Textbook problems and programming exercises 
• Choice of language 

• Expectation that Algorithmic Code is original 

– Target: 1 week turnaround on grading 

– Late Policy:  Two assignments may be turned in up to one 
week late 

• Exams (In class, tentative) 
– Midterm,  Monday,  Feb 11 (60 minutes) 

– Final, Monday, March 18, 6:30-8:20 pm 

• Approximate grade weighting 
– HW: 50, MT: 15, Final: 35 

 

 

All of Computer Science is the 

Study of Algorithms 

 

How to study algorithms 

• Zoology 

• Mine is faster than yours is 

• Algorithmic ideas 

– Where algorithms apply 

– What makes an algorithm work 

– Algorithmic thinking 

Introductory Problem: 

Stable Matching 

• Setting: 

– Assign TAs to Instructors 

– Avoid having TAs and Instructors wanting 

changes 

• E.g., Prof A. would rather have student X than her 

current TA, and student X would rather work for 

Prof A. than his current instructor. 

Formal notions 

• Perfect matching 

• Ranked preference lists 

• Stability 

 

m1 w1 

m2 w2 

Example  (1 of 3) 

m1: w1 w2 

m2: w2 w1 

w1: m1 m2 

w2: m2 m1 

m1 

m2 w2 

w1 
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Example  (2 of 3) 

m1: w1 w2 

m2: w1 w2 

w1: m1 m2 

w2: m1 m2 

m1 

m2 w2 

w1 

Example  (3 of 3) 

m1: w1 w2 

m2: w2 w1 

w1: m2 m1 

w2: m1 m2 

m1 

m2 w2 

w1 

Formal Problem 

• Input 

– Preference lists for m1, m2, …, mn 

– Preference lists for w1, w2, …, wn 

• Output 

– Perfect matching M satisfying stability 

property: 

If (m’, w’)  M and (m’’, w’’)  M then 

 (m’ prefers w’ to w’’) or (w’’ prefers m’’ to m’) 
  

Idea for an Algorithm 

m proposes to w 

If w is unmatched, w accepts 

If w is matched to m2 

If w prefers m to m2 w accepts m, dumping m2 

If w prefers m2 to m, w rejects m 

 

Unmatched m proposes to the highest w on 

its preference list that it has not already 

proposed to 
 

Algorithm 

Initially all m in M and w in W are free 

While there is a free m 

 w highest on m’s list that m has not proposed to 

 if w is free, then match (m, w) 

 else  

                     suppose (m2, w) is matched 

  if w prefers m to m2 

   unmatch (m2, w) 

   match (m, w) 

Example 

m1: w1 w2 w3 

m2: w1 w3 w2 

m3: w1 w2 w3 

 

w1: m2 m3 m1 

w2: m3 m1 m2 

w3: m3 m1 m2 

 

m1 

m2 w2 

w1 

m3 w3 
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Does this work? 

• Does it terminate? 

• Is the result a stable matching? 

 

• Begin by identifying invariants and 

measures of progress 

– m’s proposals get worse (have higher m-rank) 

– Once w is matched, w stays matched 

– w’s partners get better (have lower w-rank) 

Claim: The algorithm stops in at 

most n2 steps 

When the algorithms halts, every w 

is matched 

Why? 

 

 

 

 

 

Hence, the algorithm finds a perfect 
matching 

The resulting matching is stable 

Suppose 

  (m1, w1)  M, (m2, w2)  M 

m1 prefers w2 to w1 

 

 

How could this happen? 

  

m1 w1 

m2 w2 

Result 

• Simple, O(n2) algorithm to compute a 

stable matching 

• Corollary 

– A stable matching always exists 

 

A closer look 

Stable matchings are not necessarily fair 

m1:    w1   w2   w3 

m2:    w2   w3   w1 

m3:    w3   w1   w2 

 

w1:   m2   m3   m1 

w2:   m3   m1   m2 

w3:   m1   m2   m3 

m1 

m2 

m3 

w1 

w2 

w3 

How many stable matchings can you find? 
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Algorithm under specified 

• Many different ways of picking m’s to propose 

• Surprising result 

– All orderings of picking free m’s give the same result 

 

• Proving this type of result 

– Reordering argument 

– Prove algorithm is computing something mores 

specific 

• Show property of the solution – so it computes a specific 

stable matching 

Proposal Algorithm finds the best 

possible solution for M 

Formalize the notion of best possible solution: 

 (m, w) is valid if (m, w) is in some stable 

matching 

 best(m): the highest ranked w for m such that 

(m, w) is valid 

 S* = {(m, best(m)} 

 Every execution of the proposal algorithm 

computes S* 

Proof 

See the text book – pages 9 – 12 

 

Related result: Proposal algorithm is the 

worst case for W 

Algorithm is the M-optimal algorithm 

Proposal algorithms where w’s propose is 

W-Optimal 

 

Best choices for one side may be 

bad for the other 

Design a configuration for 

problem of size 4: 

M proposal algorithm: 

All m’s get first choice, all w’s 

get last choice 

W proposal algorithm: 

All w’s get first choice, all m’s 

get last choice 

m1: 

 

m2: 

 

m3: 

 

m4: 

 

 

w1: 

 

w2: 

 

w3: 

 

w4: 

 

But there is a stable second choice 

Design a configuration for 

problem of size 4: 

M proposal algorithm: 

All m’s get first choice, all w’s 

get last choice 

W proposal algorithm: 

All w’s get first choice, all m’s 

get last choice 

There is a stable matching 

where everyone gets their 

second choice 

m1: 

 

m2: 

 

m3: 

 

m4: 

 

 

w1: 

 

w2: 

 

w3: 

 

w4: 

 

Suppose there are n m’s, and n w’s 

• What is the minimum possible M-rank? 

 

• What is the maximum possible M-rank? 

 

• Suppose each m is matched with a 

random w,  what is the expected M-rank? 
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Random Preferences 

Suppose that the preferences are completely 

random 

If there are n m’s and n w’s, what is the expected  

value of the M-rank and the W-rank when the  

proposal algorithm computes a stable matching? 

m1: w8 w3 w1 w5 w9 w2 w4 w6 w7 w10 

m2: w7 w10 w1 w9 w3 w4 w8 w2 w5 w6 

… 

w1: m1 m4 m9 m5 m10 m3 m2 m6 m8 m7 

w2: m5 m8 m1 m3 m2 m7 m9 m10 m4 m6 

… 

What is the run time of the Stable 

Matching Algorithm? 

Initially all m in M and w in W are free 

While there is a free m 

 w highest on m’s list that m has not proposed to 

 if w is free, then match (m, w) 

 else  

                     suppose (m2, w) is matched 

  if w prefers m to m2 

   unmatch (m2, w) 

   match (m, w) 

Executed at most n2 times 

O(1) time per iteration 

• Find free m 

• Find next available w 

• If w is matched, determine m2 

• Test if w prefers m to m2 

• Update matching 

 

 

 

 

What does it mean for an algorithm 

to be efficient? 

  

 

 

Key ideas 

• Formalizing real world problem 
– Model: graph and preference lists 

– Mechanism: stability condition 

• Specification of algorithm with a natural 
operation 
– Proposal 

• Establishing termination of process through 
invariants and progress measure 

• Under specification of algorithm 

• Establishing uniqueness of solution 

 

Five Problems 



1/7/2013 

7 

Theory of Algorithms 

• What is expertise? 

• How do experts differ from novices? 

 

Introduction of five problems 

• Show the types of problems we will be 
considering in the class 

• Examples of important types of problems 

• Similar looking problems with very different 
characteristics 

• Problems 
– Scheduling 

– Weighted Scheduling 

– Bipartite Matching 

– Maximum Independent Set 

– Competitive Facility Location 

 

What is a problem? 

• Instance 

• Solution 

• Constraints on solution 

• Measure of value 

Problem: Scheduling 

• Suppose that you own a banquet hall 

• You have a series of requests for use of the hall: 

(s1, f1), (s2, f2), . . .  

 

 

 

 

• Find a set of requests as large as possible with 

no overlap 

What is the largest solution? Greedy Algorithm 

• Test elements one at a time if they can be 

members of the solution 

• If an element is not ruled out by earlier 

choices, add it to the solution 

• Many possible choices for ordering 

(length, start time, end time) 

• For this problem, considering the jobs by 

increasing end time works 
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Suppose we add values? 

• (si, fi, vi), start time, finish time, payment 

• Maximize value of elements in the solution 

 

1 4 2 

5 2 1 

6 1 3 

1 

Greedy Algorithms 

• Earliest finish time  

 

 

 

• Maximum value 

 

 

 

• Give counter examples to show these algorithms 
don’t find the maximum value solution 

Dynamic Programming 

• Requests R1, R2, R3, . . . 

• Assume requests are in increasing order 

of finish time (f1 < f2 < f3 . . .) 

• Opti is the maximum value solution of   

{R1, R2, . . ., Ri} containing Ri 

• Opti = Max{ j | fj < si }[Optj + vi] 

Matching 

• Given a bipartite 
graph G=(U,V,E), find 
a subset of the edges 
M of maximum size 
with no common 
endpoints. 

• Application:  
– U:  Professors 

– V:  Courses 

– (u,v) in E if Prof. u can 
teach course v 

Find a maximum matching Augmenting Path Algorithm 
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Reduction to network flow 

• More general problem 

• Send flow from 

source to sink 

• Flow subject to 

capacities at edges 

• Flow conserved at 

vertices 

• Can solve matching 

as a flow problem 

Maximum Independent Set 

• Given an undirected 

graph G=(V,E), find a 

set I of vertices such 

that there are no 

edges between 

vertices of I 

• Find a set I as large 

as possible 

Find a Maximum Independent Set 

A 
B 

J 

D C 

K 

E 

M 

N 

O 

P 

R 

Q 

I L 

H 

T 

U 

S 

G F 

Verification: Prove the graph has 

an independent set of size 10 

Key characteristic 

• Hard to find a solution 

• Easy to verify a solution once you have 

one 

• Other problems like this 

– Hamiltonian circuit 

– Clique 

– Subset sum 

– Graph coloring 

 

NP-Completeness 

• Theory of Hard Problems 

• A large number of problems are known to 

be equivalent 

• Very elegant theory 
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Are there even harder problems? 

• Simple game: 

– Players alternating selecting nodes in a graph 

• Score points associated with node 

• Remove nodes neighbors 

– When neither can move, player with most points wins 

4 3 2 6 

1 4 3 2 

5 

6 

5 6 4 6 5 

5 6 4 1 6 

4 

8 

2 1 

5 

7 

4 

8 

4 3 

5 

2 5 

4 

4 

Competitive Facility Location 

• Choose location for a facility 

– Value associated with placement 

– Restriction on placing facilities too close 

together 

• Competitive 

– Different companies place facilities 

• E.g., KFC and McDonald’s 

Complexity theory 

• These problems are P-Space complete 

instead of NP-Complete 

– Appear to be much harder 

– No obvious certificate 

• G has a Maximum Independent Set of size 10 

• Player 1 wins by at least 10 points 

An NP-Complete problem 

from Digital Public Health 
• ASHAs use Pico 

projectors to show health 
videos to Mothers’ groups 

• Limited number of Pico 
projectors, so ASHAs 
must travel to where the 
Pico projector is stored 

• Identify storage locations 
for k Pico projectors to 
minimize the maximum 
distance an ASHA must 
travel 

 

Summary 

• Scheduling 

• Weighted Scheduling 

• Bipartite Matching 

• Maximum Independent Set 

• Competitive Scheduling 


