
1/7/2013

1

CSEP 521

Applied Algorithms

Richard Anderson

Winter 2013

Lecture 1

CSEP 521 Course Introduction

• CSEP 521, Applied Algorithms
– Monday’s, 6:30-9:20 pm

– CSE 305 and Microsoft Building 99

• Instructor
– Richard Anderson, anderson@cs.washington.edu

– Office hours:
• CSE 582

• Monday, 4:00-5:00 pm or by appointment

• Teaching Assistant
– Tanvir Aumi, tanvir@cs.washington.edu

– Office hours:
• TBD

Announcements

• It’s on the web.

• Homework due at start of class on

Mondays

– HW 1, Due January 14, 2013

– It’s on the web

http://www.cs.washington.edu/education/courses/csep521/13wi/

Text book

• Algorithm Design

• Jon Kleinberg, Eva Tardos

• Read Chapters 1 & 2

• Expected coverage:

– Chapter 1 through 7

Recorded lectures

• This is a distance course, so lectures are
recorded and will be available on line for later
viewing

• However, low attendance in the distance
PMP course is a concern
– Various draconian measures are under

discussion

• We will make lectures available
– Please attend class, and participate

– Participation may be a component of the class
grade

Lecture schedule

• Monday holidays:
– Monday, January 21, MLK

– Monday, February 18, President’s day

• Make up lectures will be scheduled, which
will be recorded for offline viewing
– Hopefully, some students will attend, so there is a

studio audience

– First makeup lecture:
• Thursday, January 17, 5:00-6:30 pm

• Additional makeup lectures to accommodate
RJA’s travel schedule

mailto:anderson@cs.washington.edu
mailto:tanvir@cs.washington.edu
http://www.cs.washington.edu/education/courses/csep521/13wi/
http://www.cs.washington.edu/education/courses/csep521/13wi/

1/7/2013

2

Course Mechanics

• Homework
– Due Mondays

– Textbook problems and programming exercises
• Choice of language

• Expectation that Algorithmic Code is original

– Target: 1 week turnaround on grading

– Late Policy: Two assignments may be turned in up to one
week late

• Exams (In class, tentative)
– Midterm, Monday, Feb 11 (60 minutes)

– Final, Monday, March 18, 6:30-8:20 pm

• Approximate grade weighting
– HW: 50, MT: 15, Final: 35

All of Computer Science is the

Study of Algorithms

How to study algorithms

• Zoology

• Mine is faster than yours is

• Algorithmic ideas

– Where algorithms apply

– What makes an algorithm work

– Algorithmic thinking

Introductory Problem:

Stable Matching

• Setting:

– Assign TAs to Instructors

– Avoid having TAs and Instructors wanting

changes

• E.g., Prof A. would rather have student X than her

current TA, and student X would rather work for

Prof A. than his current instructor.

Formal notions

• Perfect matching

• Ranked preference lists

• Stability

m1 w1

m2 w2

Example (1 of 3)

m1: w1 w2

m2: w2 w1

w1: m1 m2

w2: m2 m1

m1

m2 w2

w1

1/7/2013

3

Example (2 of 3)

m1: w1 w2

m2: w1 w2

w1: m1 m2

w2: m1 m2

m1

m2 w2

w1

Example (3 of 3)

m1: w1 w2

m2: w2 w1

w1: m2 m1

w2: m1 m2

m1

m2 w2

w1

Formal Problem

• Input

– Preference lists for m1, m2, …, mn

– Preference lists for w1, w2, …, wn

• Output

– Perfect matching M satisfying stability

property:

If (m’, w’) M and (m’’, w’’) M then

 (m’ prefers w’ to w’’) or (w’’ prefers m’’ to m’)

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

If w is matched to m2

If w prefers m to m2 w accepts m, dumping m2

If w prefers m2 to m, w rejects m

Unmatched m proposes to the highest w on

its preference list that it has not already

proposed to

Algorithm

Initially all m in M and w in W are free

While there is a free m

 w highest on m’s list that m has not proposed to

 if w is free, then match (m, w)

 else

 suppose (m2, w) is matched

 if w prefers m to m2

 unmatch (m2, w)

 match (m, w)

Example

m1: w1 w2 w3

m2: w1 w3 w2

m3: w1 w2 w3

w1: m2 m3 m1

w2: m3 m1 m2

w3: m3 m1 m2

m1

m2 w2

w1

m3 w3

1/7/2013

4

Does this work?

• Does it terminate?

• Is the result a stable matching?

• Begin by identifying invariants and

measures of progress

– m’s proposals get worse (have higher m-rank)

– Once w is matched, w stays matched

– w’s partners get better (have lower w-rank)

Claim: The algorithm stops in at

most n2 steps

When the algorithms halts, every w

is matched

Why?

Hence, the algorithm finds a perfect
matching

The resulting matching is stable

Suppose

 (m1, w1) M, (m2, w2) M

m1 prefers w2 to w1

How could this happen?

m1 w1

m2 w2

Result

• Simple, O(n2) algorithm to compute a

stable matching

• Corollary

– A stable matching always exists

A closer look

Stable matchings are not necessarily fair

m1: w1 w2 w3

m2: w2 w3 w1

m3: w3 w1 w2

w1: m2 m3 m1

w2: m3 m1 m2

w3: m1 m2 m3

m1

m2

m3

w1

w2

w3

How many stable matchings can you find?

1/7/2013

5

Algorithm under specified

• Many different ways of picking m’s to propose

• Surprising result

– All orderings of picking free m’s give the same result

• Proving this type of result

– Reordering argument

– Prove algorithm is computing something mores

specific

• Show property of the solution – so it computes a specific

stable matching

Proposal Algorithm finds the best

possible solution for M

Formalize the notion of best possible solution:

 (m, w) is valid if (m, w) is in some stable

matching

 best(m): the highest ranked w for m such that

(m, w) is valid

 S* = {(m, best(m)}

 Every execution of the proposal algorithm

computes S*

Proof

See the text book – pages 9 – 12

Related result: Proposal algorithm is the

worst case for W

Algorithm is the M-optimal algorithm

Proposal algorithms where w’s propose is

W-Optimal

Best choices for one side may be

bad for the other

Design a configuration for

problem of size 4:

M proposal algorithm:

All m’s get first choice, all w’s

get last choice

W proposal algorithm:

All w’s get first choice, all m’s

get last choice

m1:

m2:

m3:

m4:

w1:

w2:

w3:

w4:

But there is a stable second choice

Design a configuration for

problem of size 4:

M proposal algorithm:

All m’s get first choice, all w’s

get last choice

W proposal algorithm:

All w’s get first choice, all m’s

get last choice

There is a stable matching

where everyone gets their

second choice

m1:

m2:

m3:

m4:

w1:

w2:

w3:

w4:

Suppose there are n m’s, and n w’s

• What is the minimum possible M-rank?

• What is the maximum possible M-rank?

• Suppose each m is matched with a

random w, what is the expected M-rank?

1/7/2013

6

Random Preferences

Suppose that the preferences are completely

random

If there are n m’s and n w’s, what is the expected

value of the M-rank and the W-rank when the

proposal algorithm computes a stable matching?

m1: w8 w3 w1 w5 w9 w2 w4 w6 w7 w10

m2: w7 w10 w1 w9 w3 w4 w8 w2 w5 w6

…

w1: m1 m4 m9 m5 m10 m3 m2 m6 m8 m7

w2: m5 m8 m1 m3 m2 m7 m9 m10 m4 m6

…

What is the run time of the Stable

Matching Algorithm?

Initially all m in M and w in W are free

While there is a free m

 w highest on m’s list that m has not proposed to

 if w is free, then match (m, w)

 else

 suppose (m2, w) is matched

 if w prefers m to m2

 unmatch (m2, w)

 match (m, w)

Executed at most n2 times

O(1) time per iteration

• Find free m

• Find next available w

• If w is matched, determine m2

• Test if w prefers m to m2

• Update matching

What does it mean for an algorithm

to be efficient?

Key ideas

• Formalizing real world problem
– Model: graph and preference lists

– Mechanism: stability condition

• Specification of algorithm with a natural
operation
– Proposal

• Establishing termination of process through
invariants and progress measure

• Under specification of algorithm

• Establishing uniqueness of solution

Five Problems

1/7/2013

7

Theory of Algorithms

• What is expertise?

• How do experts differ from novices?

Introduction of five problems

• Show the types of problems we will be
considering in the class

• Examples of important types of problems

• Similar looking problems with very different
characteristics

• Problems
– Scheduling

– Weighted Scheduling

– Bipartite Matching

– Maximum Independent Set

– Competitive Facility Location

What is a problem?

• Instance

• Solution

• Constraints on solution

• Measure of value

Problem: Scheduling

• Suppose that you own a banquet hall

• You have a series of requests for use of the hall:

(s1, f1), (s2, f2), . . .

• Find a set of requests as large as possible with

no overlap

What is the largest solution? Greedy Algorithm

• Test elements one at a time if they can be

members of the solution

• If an element is not ruled out by earlier

choices, add it to the solution

• Many possible choices for ordering

(length, start time, end time)

• For this problem, considering the jobs by

increasing end time works

1/7/2013

8

Suppose we add values?

• (si, fi, vi), start time, finish time, payment

• Maximize value of elements in the solution

1 4 2

5 2 1

6 1 3

1

Greedy Algorithms

• Earliest finish time

• Maximum value

• Give counter examples to show these algorithms
don’t find the maximum value solution

Dynamic Programming

• Requests R1, R2, R3, . . .

• Assume requests are in increasing order

of finish time (f1 < f2 < f3 . . .)

• Opti is the maximum value solution of

{R1, R2, . . ., Ri} containing Ri

• Opti = Max{ j | fj < si }[Optj + vi]

Matching

• Given a bipartite
graph G=(U,V,E), find
a subset of the edges
M of maximum size
with no common
endpoints.

• Application:
– U: Professors

– V: Courses

– (u,v) in E if Prof. u can
teach course v

Find a maximum matching Augmenting Path Algorithm

1/7/2013

9

Reduction to network flow

• More general problem

• Send flow from

source to sink

• Flow subject to

capacities at edges

• Flow conserved at

vertices

• Can solve matching

as a flow problem

Maximum Independent Set

• Given an undirected

graph G=(V,E), find a

set I of vertices such

that there are no

edges between

vertices of I

• Find a set I as large

as possible

Find a Maximum Independent Set

A
B

J

D C

K

E

M

N

O

P

R

Q

I L

H

T

U

S

G F

Verification: Prove the graph has

an independent set of size 10

Key characteristic

• Hard to find a solution

• Easy to verify a solution once you have

one

• Other problems like this

– Hamiltonian circuit

– Clique

– Subset sum

– Graph coloring

NP-Completeness

• Theory of Hard Problems

• A large number of problems are known to

be equivalent

• Very elegant theory

1/7/2013

10

Are there even harder problems?

• Simple game:

– Players alternating selecting nodes in a graph

• Score points associated with node

• Remove nodes neighbors

– When neither can move, player with most points wins

4 3 2 6

1 4 3 2

5

6

5 6 4 6 5

5 6 4 1 6

4

8

2 1

5

7

4

8

4 3

5

2 5

4

4

Competitive Facility Location

• Choose location for a facility

– Value associated with placement

– Restriction on placing facilities too close

together

• Competitive

– Different companies place facilities

• E.g., KFC and McDonald’s

Complexity theory

• These problems are P-Space complete

instead of NP-Complete

– Appear to be much harder

– No obvious certificate

• G has a Maximum Independent Set of size 10

• Player 1 wins by at least 10 points

An NP-Complete problem

from Digital Public Health
• ASHAs use Pico

projectors to show health
videos to Mothers’ groups

• Limited number of Pico
projectors, so ASHAs
must travel to where the
Pico projector is stored

• Identify storage locations
for k Pico projectors to
minimize the maximum
distance an ASHA must
travel

Summary

• Scheduling

• Weighted Scheduling

• Bipartite Matching

• Maximum Independent Set

• Competitive Scheduling

