### CSEP 521 Applied Algorithms

Richard Anderson Winter 2013 Lecture 1

### CSEP 521 Course Introduction

- CSEP 521, Applied Algorithms
  - Monday's, 6:30-9:20 pm
    CSE 305 and Microsoft Building 99
  - CSE 305 and MICrosoft Build
- Instructor
  - Richard Anderson, <u>anderson@cs.washington.edu</u>
    Office hours:
  - CSE 582
  - Monday, 4:00-5:00 pm or by appointment
- Teaching Assistant
  - Tanvir Aumi, tanvir@cs.washington.edu
  - Office hours:
    TBD

### Announcements

- · It's on the web.
- Homework due at start of class on Mondays
  - HW 1, Due January 14, 2013

- It's on the web

http://www.cs.washington.edu/education/courses/csep521/13wi/

# Text book Algorithm Design Jon Kleinberg, Eva Tardos Read Chapters 1 & 2 Exposted sourcesso:

Expected coverage:
 – Chapter 1 through 7



### **Recorded lectures**

- This is a distance course, so lectures are recorded and will be available on line for later viewing
- However, low attendance in the distance PMP course is a concern
  - Various draconian measures are under discussion
- We will make lectures available
  - Please attend class, and participate
  - Participation may be a component of the class grade

### Lecture schedule

#### · Monday holidays:

- Monday, January 21, MLK
- Monday, February 18, President's day
- Make up lectures will be scheduled, which will be recorded for offline viewing
  - Hopefully, some students will attend, so there is a studio audience
  - First makeup lecture:
  - Thursday, January 17, 5:00-6:30 pm
- Additional makeup lectures to accommodate RJA's travel schedule

### **Course Mechanics**

- Homework
  - Due Mondays
  - Textbook problems and programming exercises Choice of language
    Expectation that Algorithmic Code is original
  - Target: 1 week turnaround on grading
  - Late Policy: Two assignments may be turned in up to one week late

  - Exams (In class, tentative)
  - Midterm, Monday, Feb 11 (60 minutes)
  - Final, Monday, March 18, 6:30-8:20 pm
- · Approximate grade weighting
  - HW: 50, MT: 15, Final: 35

### All of Computer Science is the Study of Algorithms

### How to study algorithms

- · Zoology
- · Mine is faster than yours is
- · Algorithmic ideas
  - Where algorithms apply
  - What makes an algorithm work
  - Algorithmic thinking

### Introductory Problem: **Stable Matching**

- · Setting:
  - Assign TAs to Instructors
  - Avoid having TAs and Instructors wanting changes
    - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.





| Ex                                             | ample (2 of 3)   | )                |
|------------------------------------------------|------------------|------------------|
| $m_1: w_1 w_2$                                 | $m_{1\bigcirc}$  | ⊖w <sub>1</sub>  |
| $w_1: m_1 m_2$<br>$w_1: m_1 m_2$               |                  |                  |
| w <sub>2</sub> : m <sub>1</sub> m <sub>2</sub> | m <sub>2</sub> ⊜ | ⊖ W <sub>2</sub> |
|                                                |                  |                  |
|                                                |                  |                  |

|                                                                                                                                                    | Example | (3 of 3)         |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|-------------------------|
| m <sub>1</sub> : w <sub>1</sub> w <sub>2</sub><br>m <sub>2</sub> : w <sub>2</sub> w <sub>1</sub><br>w <sub>1</sub> : m <sub>2</sub> m <sub>4</sub> |         | $m_{1}$          | ⊜w <sub>1</sub>         |
| w <sub>2</sub> : m <sub>1</sub> m <sub>2</sub>                                                                                                     | 2       | m <sub>2</sub> ⊖ | <b>○</b> ₩ <sub>2</sub> |
|                                                                                                                                                    |         |                  |                         |

### Formal Problem

Input

- Preference lists for  $m_1,\,m_2,\,...,\,m_n$
- Preference lists for  $w_1, w_2, ..., w_n$
- Output
  - Perfect matching M satisfying stability property:

If  $(m', w') \in M$  and  $(m'', w'') \in M$  then (m' prefers w' to w'') or (w'' prefers m'' to m')

### Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

If w is matched to  $m_2$ 

If w prefers m to  $m_2$  w accepts m, dumping  $m_2$  If w prefers  $m_2$  to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

### Algorithm

Initially all m in M and w in W are free While there is a free m w highest on m's list that m has not proposed to if w is free, then match (m, w)else suppose  $(m_2, w)$  is matched if w prefers m to m<sub>2</sub> unmatch  $(m_2, w)$ match (m, w)

| E                                                                                                                              | xample            |                           |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|
| $m_1: w_1 w_2 w_3$<br>$m_2: w_1 w_3 w_2$                                                                                       | $m_{1}$           | $\bigcirc W_1$            |
| m <sub>3</sub> : w <sub>1</sub> w <sub>2</sub> w <sub>3</sub><br>w <sub>1</sub> : m <sub>2</sub> m <sub>3</sub> m <sub>1</sub> | $m_2$ $\bigcirc$  | ⊖ W <sub>2</sub>          |
| $w_2: m_3 m_1 m_2$<br>$w_3: m_3 m_1 m_2$                                                                                       | m <sub>3 ()</sub> | $\bigcirc$ W <sub>3</sub> |

### Does this work?

- Does it terminate?
- · Is the result a stable matching?
- Begin by identifying invariants and measures of progress
  - m's proposals get worse (have higher m-rank)
  - Once w is matched, w stays matched
  - w's partners get better (have lower w-rank)

# Claim: The algorithm stops in at most n<sup>2</sup> steps

## When the algorithms halts, every w is matched

Why?

Hence, the algorithm finds a perfect matching



### Result

- Simple, O(n<sup>2</sup>) algorithm to compute a stable matching
- Corollary
   A stable matching always exists



### Algorithm under specified

- · Many different ways of picking m's to propose
- · Surprising result
  - All orderings of picking free m's give the same result
- · Proving this type of result
  - Reordering argument
  - Prove algorithm is computing something mores specific
    - Show property of the solution so it computes a specific stable matching

### Proposal Algorithm finds the best possible solution for M

Formalize the notion of best possible solution: (m, w) is valid if (m, w) is in some stable matching best(m): the highest ranked w for m such that (m, w) is valid S\* = {(m, best(m)} Every execution of the proposal algorithm computes S\*

### Proof

See the text book - pages 9 - 12

Related result: Proposal algorithm is the worst case for W Algorithm is the M-optimal algorithm

Proposal algorithms where w's propose is W-Optimal

# Best choices for one side may be bad for the other

| Design a configuration for                                 | m <sub>1</sub> : |
|------------------------------------------------------------|------------------|
| problem of size 4:                                         | m <sub>2</sub> : |
| M proposal algorithm:<br>All m's get first choice, all w's | m <sub>3</sub> : |
| W proposal algorithm:                                      | m <sub>4</sub> : |
| All w's get first choice, all m's                          |                  |
| get last choice                                            | w <sub>1</sub> . |
|                                                            | w <sub>2</sub> : |
|                                                            | <b>w</b> 3:      |
|                                                            | w <sub>4</sub> : |
|                                                            |                  |

# But there is a stable second choice Design a configuration for problem of size 4: m1: M proposal algorithm: m2: All m's get first choice, all w's get last choice m3: W proposal algorithm: m4:

| vv proposal algorithm:                                  |                  |
|---------------------------------------------------------|------------------|
| All w's get first choice, all m's<br>get last choice    | w <sub>1</sub> : |
| There is a stable matching<br>where everyone gets their | w <sub>2</sub> : |
| second choice                                           | w <sub>3</sub> : |
|                                                         | W4:              |

### Suppose there are n m's, and n w's

- What is the minimum possible M-rank?
- What is the maximum possible M-rank?
- Suppose each m is matched with a random w, what is the expected M-rank?

### **Random Preferences**

Suppose that the preferences are completely random

 $w_2$ :  $m_5 m_8 m_1 m_3 m_2 m_7 m_9 m_{10} m_4 m_6$ 

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

# What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free While there is a free m Executed at most n<sup>2</sup> times w highest on m's list that m has not proposed to if w is free, then match (m, w) else suppose (m<sub>2</sub>, w) is matched if w prefers m to m<sub>2</sub> unmatch (m<sub>2</sub>, w) match (m, w)

### O(1) time per iteration

- · Find free m
- · Find next available w
- If w is matched, determine m<sub>2</sub>
- Test if w prefers m to m<sub>2</sub>
- · Update matching

### Key ideas

- Formalizing real world problem
   Model: graph and preference lists
  - Mechanism: stability condition
- Specification of algorithm with a natural operation

– Proposal

- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- · Establishing uniqueness of solution

What does it mean for an algorithm to be efficient?

**Five Problems** 

### Theory of Algorithms

- What is expertise?
- · How do experts differ from novices?

### Introduction of five problems

- Show the types of problems we will be considering in the class
- Examples of important types of problems
- Similar looking problems with very different characteristics
- Problems
  - Scheduling
  - Weighted Scheduling
    Bipartite Matching
  - Maximum Independent Set
  - Competitive Facility Location

### What is a problem?

- Instance
- Solution
- · Constraints on solution
- Measure of value











### **Dynamic Programming**

- Requests  $R_1, R_2, R_3, \ldots$
- Assume requests are in increasing order of finish time ( $f_1 < f_2 < f_3 \dots$ )
- Opt\_i is the maximum value solution of  $\{R_1,\,R_2,\,\ldots,\,R_i\}$  containing  $R_i$
- $Opt_i = Max\{ j | f_j < s_i \}[Opt_j + v_i]$







### Reduction to network flow

- More general problem
- Send flow from source to sink
- Flow subject to capacities at edges
- Flow conserved at vertices
- Can solve matching as a flow problem



### Maximum Independent Set

- Given an undirected graph G=(V,E), find a set I of vertices such that there are no edges between vertices of I
- Find a set I as large as possible







### Key characteristic

- · Hard to find a solution
- Easy to verify a solution once you have one
- · Other problems like this
  - Hamiltonian circuit
  - Clique
  - Subset sum
  - Graph coloring

### **NP-Completeness**

- Theory of Hard Problems
- A large number of problems are known to be equivalent
- · Very elegant theory

### Are there even harder problems?

- Simple game:
  - Players alternating selecting nodes in a graph
    - Score points associated with node
    - Remove nodes neighbors
  - When neither can move, player with most points wins





### **Competitive Facility Location**

- · Choose location for a facility
  - Value associated with placement
  - Restriction on placing facilities too close together
- Competitive
  - Different companies place facilities
    - E.g., KFC and McDonald's

### Complexity theory

- These problems are P-Space complete instead of NP-Complete
  - Appear to be much harder
  - No obvious certificate
    - G has a Maximum Independent Set of size 10
    - Player 1 wins by at least 10 points

# An NP-Complete problem from Digital Public Health

- ASHAs use Pico projectors to show health videos to Mothers' groups
- Limited number of Pico projectors, so ASHAs must travel to where the Pico projector is stored
- Identify storage locations for k Pico projectors to minimize the maximum distance an ASHA must travel



### Summary

- Scheduling
- Weighted Scheduling
- · Bipartite Matching
- Maximum Independent Set
- · Competitive Scheduling