CSEP 521 Applied Algorithms

Richard Anderson
Winter 2013
Lecture 1

CSEP 521 Course Introduction

- CSEP 521, Applied Algorithms
 - Monday's, 6:30-9:20 pm
 - CSE 305 and Microsoft Building 99
- Instructor
 - Richard Anderson, anderson@cs.washington.edu
 - Office hours:
 - CSE 582
 - Monday, 4:00-5:00 pm or by appointment
- Teaching Assistant
 - Tanvir Aumi, tanvir@cs.washington.edu
 - Office hours:
 - TBD

Announcements

- It's on the web.
- Homework due at start of class on Mondays
 - HW 1, Due January 14, 2013
 - It's on the web

http://www.cs.washington.edu/education/courses/csep521/13wi/

Text book

- Algorithm Design
- Jon Kleinberg, Eva Tardos

Read Chapters 1 & 2

- Expected coverage:
 - Chapter 1 through 7

Recorded lectures

- This is a distance course, so lectures are recorded and will be available on line for later viewing
- However, low attendance in the distance PMP course is a concern
 - Various draconian measures are under discussion
- We will make lectures available
 - Please attend class, and participate
 - Participation may be a component of the class grade

Lecture schedule

- Monday holidays:
 - Monday, January 21, MLK
 - Monday, February 18, President's day
- Make up lectures will be scheduled, which will be recorded for offline viewing
 - Hopefully, some students will attend, so there is a studio audience
 - First makeup lecture:
 - Thursday, January 17, 5:00-6:30 pm
- Additional makeup lectures to accommodate RJA's travel schedule

Course Mechanics

- Homework
 - Due Mondays
 - Textbook problems and programming exercises
 - Choice of language
 - Expectation that Algorithmic Code is original
 - Target: 1 week turnaround on grading
 - Late Policy: Two assignments may be turned in up to one week late
- Exams (In class, typtiwe)
 - Midterm, Monday, Feb 11 (60 minutes)
 - Final, Wonday, March 18, 6:30-8:20 pm
- Approximate grade weighting
 - HW: 50, MT: 15, Final: 35

All of Computer Science is the Study of Algorithms

How to study algorithms

- Zoology
- Mine is faster than yours is
- Algorithmic ideas
 - Where algorithms apply
 - What makes an algorithm work
 - Algorithmic thinking

Introductory Problem: Stable Matching

Setting:

- Assign TAs to Instructors
- Avoid having TAs and Instructors wanting changes
 - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Formal notions

0-0

- Perfect matching
- Ranked preference lists
- Stability

Example (1 of 3)

 $m_1: W_1 W_2$

m₂: W₂ W₁

 $w_1: m_1 m_2$

 W_2 : $M_2 M_1$

Example (2 of 3)

 $m_1: W_1 W_2$

m₂: W₁ W₂

 $w_1: m_1 m_2$

 w_2 : $m_1 m_2$

Example (3 of 3)

m₁: W₁ W₂

 m_2 : $w_2 w_1$

w₁: m₂ m₁

 w_2 : $m_1 m_2$

Formal Problem

Input

- Preference lists for m₁, m₂, ..., m_n
- Preference lists for w₁, w₂, ..., w_n

Output

 Perfect matching M satisfying stability property:

```
If (m', w') \in M and (m'', w'') \in M then (m') prefers w' to w'') or (w'') prefers m'' to m')
```

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

If w is matched to m₂

If w prefers m to m₂ w accepts m, dumping m₂

If w prefers m₂ to m, w rejects m

Unmatched m proposes to the highest w on this preference list that it has not already proposed to

Algorithm

```
Initially all m in M and w in W are free
While there is a free m
w highest on m's list that m has not proposed to
if w is free, then match (m, w)
else
suppose (m<sub>2</sub>, w) is matched
if w prefers m to m<sub>2</sub>
unmatch (m<sub>2</sub>, w)
match (m, w)
```

Example

 w_1 : $m_2 m_3 m_1$

w₂: m₃ m₁ m₂

 w_3 : $m_3 m_1 m_2$

Does this work?

- Does it terminate?
- Is the result a stable matching?

- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: The algorithm stops in at most n² steps

At each step some m advonce its preferou list. When the algorithms halts, every w is matched

Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

 $(m_1, w_1) \in M$, $(m_2, w_2) \in M$ m_1 prefers w_2 to w_1

How could this happen?

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists

A closer look

Stable matchings are not necessarily fair

 m_1 : w_1 w_2 w_3

 m_2 : w_2 w_3 w_1

 m_3 : w_3 w_1 w_2

 \mathbf{w}_1 : \mathbf{m}_2 \mathbf{m}_3 \mathbf{m}_1

 \mathbf{w}_2 : \mathbf{m}_3 \mathbf{m}_1 \mathbf{m}_2

 w_3 : m_1 m_2 m_3

How many stable matchings can you find?

Algorithm under specified

- Many different ways of picking m's to propose
- Surprising result
 - All orderings of picking free m's give the same result
- Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores specific
 - Show property of the solution so it computes a specific stable matching

Proposal Algorithm finds the best possible solution for M

Formalize the notion of best possible solution:

```
(m, w) is valid if (m, w) is in some stable matching
```

best(m): the highest ranked w for m such that (m, w) is valid

 $S^* = \{(m, best(m))\}$

Every execution of the proposal algorithm computes S*

Proof

See the text book – pages 9 – 12

Related result: Proposal algorithm is the worst case for W

Algorithm is the M-optimal algorithm

Proposal algorithms where w's propose is W-Optimal

Best choices for one side may be bad for the other

Design a configuration for problem of size 4:

 \mathbf{m}_1 :

 m_2 :

M proposal algorithm:

All m's get first choice, all w's get last choice

 m_3 :

m₄:

W proposal algorithm:

All w's get first choice, all m's get last choice

W₁:

W2:

 W_3 :

W4:

But there is a stable second choice

Design a configuration for problem of size 4:

M proposal algorithm:

All m's get first choice, all w's get last choice

W proposal algorithm:

All w's get first choice, all m's get last choice

There is a stable matching where everyone gets their second choice

```
m1: W, W3 W4 W2
m2: W2 W4 W3 W1
m4: W4 W2 W, W3
```

Suppose there are n m's, and n w's

What is the minimum possible M-rank?

1

What is the maximum possible M-rank?

nZ

 Suppose each m is matched with a random w, what is the expected M-rank?

Random Preferences

Suppose that the preferences are completely random

```
m<sub>1</sub>: w<sub>8</sub> w<sub>3</sub> w<sub>1</sub> w<sub>5</sub> w<sub>9</sub> w<sub>2</sub> w<sub>4</sub> w<sub>6</sub> w<sub>7</sub> w<sub>10</sub>
m<sub>2</sub>: w<sub>7</sub> w<sub>10</sub> w<sub>1</sub> w<sub>9</sub> w<sub>3</sub> w<sub>4</sub> w<sub>8</sub> w<sub>2</sub> w<sub>5</sub> w<sub>6</sub>
...
w<sub>1</sub>: m<sub>1</sub> m<sub>4</sub> m<sub>9</sub> m<sub>5</sub> m<sub>10</sub> m<sub>3</sub> m<sub>2</sub> m<sub>6</sub> m<sub>8</sub> m<sub>7</sub>
w<sub>2</sub>: m<sub>5</sub> m<sub>8</sub> m<sub>1</sub> m<sub>3</sub> m<sub>2</sub> m<sub>7</sub> m<sub>9</sub> m<sub>10</sub> m<sub>4</sub> m<sub>6</sub>
...
```

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

What is the run time of the Stable Matching Algorithm?

```
Initially all m in M and w in W are free

While there is a free m

Whighest on m's list that m has not proposed to if w is free, then match (m, w) else

suppose (m<sub>2</sub>, w) is matched if w prefers m to m<sub>2</sub>

unmatch (m<sub>2</sub>, w)

match (m, w)
```

O(1) time per iteration

- Find free m
- Find next available w
- If w is matched, determine m₂
- Test if w prefers m to m₂
- Update matching

What does it mean for an algorithm to be efficient?

Key ideas

- Formalizing real world problem
 - Model: graph and preference lists
 - Mechanism: stability condition
- Specification of algorithm with a natural operation
 - Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution

Introduction of five problems

- Show the types of problems we will be considering in the class
- Examples of important types of problems
- Similar looking problems with very different characteristics
- Problems
 - Scheduling
 - Weighted Scheduling
 - Bipartite Matching
 - Maximum Independent Set
 - Competitive Facility Location

Minimum S panning Tree What is a problem?

- Instance
- Solution
- Constraints on solution
- Measure of value

Gruph + weights on edges Edge form a spanning free

- som of the ease

Problem: Scheduling

- Suppose that you own a banquet hall
- You have a series of requests for use of the hall: (s₁, f₁), (s₂, f₂), . . .

 Find a set of requests as large as possible with no overlap

What is the largest solution	? choose
<u> </u>	overlap
	Liose
<u>a</u>	- Short

Greedy Algorithm

- Test elements one at a time if they can be members of the solution
- If an element is not ruled out by earlier choices, add it to the solution
- Many possible choices for ordering (length, start time, end time)
- For this problem, considering the jobs by increasing end time works

Suppose we add values?

- (s_i, f_i, v_i), start time, finish time, payment
- Maximize value of elements in the solution

Greedy Algorithms

· Earliest finish time

Maximum value

 Give counter examples to show these algorithms don't find the maximum value solution

Dynamic Programming

- Requests R₁, R₂, R₃, . . .
- Assume requests are in increasing order of finish time (f₁ < f₂ < f₃ . . .)
- Opt_i is the maximum value solution of {R₁, R₂, . . ., R_i} containing R_i
- Opt_i = Max{ j | f_j < s_i}[Opt_j + v_i]

Matching

- Given a bipartite graph G=(U,V,E), find a subset of the edges M of maximum size with no common endpoints.
- Application:
 - U: Professors
 - V: Courses
 - (u,v) in E if Prof. u can teach course v

Find a maximum matching

Augmenting Path Algorithm

Reduction to network flow

- More general problem
- Send flow from source to sink
- Flow subject to capacities at edges
- Flow conserved at vertices
- Can solve matching as a flow problem

Maximum Independent Set

- Given an undirected graph G=(V,E), find a set I of vertices such that there are no edges between vertices of I
- Find a set I as large as possible

Find a Maximum Independent Set

Verification: Prove the graph has an independent set of size 10

Key characteristic

- Hard to find a solution
- Easy to verify a solution once you have one
- Other problems like this
 - Hamiltonian circuit
 - Clique
 - Subset sum
 - Graph coloring

NP-Completeness

- Theory of Hard Problems
- A large number of problems are known to be equivalent
- Very elegant theory

Are there even harder problems?

- Simple game:
 - Players alternating selecting nodes in a graph
 - Score points associated with node
 - Remove nodes neighbors
 - When neither can move, player with most points wins

P- space complète.

Competitive Facility Location

- Choose location for a facility
 - Value associated with placement
 - Restriction on placing facilities too close together
- Competitive
 - Different companies place facilities
 - E.g., KFC and McDonald's

Complexity theory

- These problems are P-Space complete instead of NP-Complete
 - Appear to be much harder
 - No obvious certificate
 - G has a Maximum Independent Set of size 10
 - Player 1 wins by at least 10 points

An NP-Complete problem from Digital Public Health

- ASHAs use Pico projectors to show health videos to Mothers' groups
- Limited number of Pico projectors, so ASHAs must travel to where the Pico projector is stored
- Identify storage locations for k Pico projectors to minimize the maximum distance an ASHA must travel

Summary

- Scheduling
- Weighted Scheduling
- Bipartite Matching
- Maximum Independent Set
- Competitive Scheduling