CSERP 921
Algorithms

Divide and Conquer

Richard Anderson

With Special Cameo Appearance by
Larry Ruzzo

Divide and Conquer Algorithms

Split into sub problems
Recursively solve the problem
Combine solutions

Make progress in the split and combine stages __
Quicksort — progress macde at the split step
Mergesort — progress made at the combine step

D&C Algorithms

Strassen’s Algorithm — Matrix Multiplication
Inversions

Median

Closest Pair

Integer Multiplication
FFT

drvide & congquer — the 1{{5‘}-* 1dea

Suppose we've already invented
DumbSort, taking time n?

Try Just One Level of divide & conquer:

D&C In a
nutshell

DumbSort(first n/2 elements)
DumbSort(last n/2 elements)

Merge results

Time] 2 (n/2)24 n=n3/2 + n < n?
= oee—— -
Almost twice as fast! i

d&:c approa ch. cont.

Moral 1: “two halves are better than a whole’

Two problems of half size are better than one full-size
problem, even given O(n) overhead of recombining,
since the base algorithm has super-linear complexity.

Moral 2: “If a little's good, then more's better’

Two levels of D&C would be almost 4 times faster, 3
levels almost 8, efc., even though overhead is
growing.

Best is usually full recursion down to some small
constant size (balancing "work" vs "overhead").

In the limit you've just rediscovered mergesort!

mergesort (review)

Mergesort: (recursively) sort 2 half-lists,
then merge results.

T(n) = 2T(n/2)+cn, n=2

- O(n)
T(1) =0 % work
Solution: ®(n log n) % Fe?a

(detalls later)

What you really need to know
about recurrences

Work per level changes geometrically with
the level

Geometrically increasing (x > 1)
The bottom level wins — count leaves

Geometrically decreasing (x < 1)
The top level wins — count top level work
Balanced (x = 1)

Equal contribution —top « levels (e.g. "n logn’)

T(n)=aTl(n/b) + n°®

Balanced: a =b°

e : '
QG%) ﬁ"""'“]’bf}'ﬁ\ﬂ(hx.f

Gy

Increasing: a > b°

Decreasing: a < b

Recurrences

Next how to solve them

mergesort (review)

Mergesort: (recursively) sort 2 half-lists,
then merge results.

T(n) = 2T(n/2)+cn, n=2

= QO(n)

T(1) =0 % work

Solution: ®(n log n) % F::g
(detg#S later) B

now

Solve: T(l)=c
T(n) = 2 Ti/2) + en

0 1=2° n ch
1 2=2 n/2 2ch/2
2 4 =2° n/4 4dcn/4
i 2 n/2! 2l ¢ n/2
k-1 21 n/2k" 241 ¢ nf2x?
N = 2k Kk = |ngﬁ K 2K n/2k = 2KT(1)

Total Work: ¢ n (1+log,n)

Solve: T(l)=c

Tn) =4 Th/2) +en

n=2k: k=log,n

Total Work: T(n

0 1=40 n
1 4=4 n/2
2 16=42 n/4

i 4 n/2
k-1 4] /2%
kK 4k k=

Z 4 en/2 = O(n’)

ch
Adcn/2
16¢cn/4

4' ¢ n/2

4k1 ¢ pf2k!
4<T(1)
4k =

' (22}k=
(22 = R

Solve: Tl =c

T(n) =3 T/2) + cn

0 1=30 n m

1 A =3 n/2 3ch/2
2 9=3 n/4 9cn/4
. i 3! n/2 3'¢c n/2
k-1 3k n/2k 3«1 ¢ n/2x
N = 2k k= lDQZH K 3K ni2k= 1 35T

Total Work: T(ny= £ o3cns2 N\

a usetul 1{1&11“[1@*

Theorem:
1T+ X +x2+x3+ ... +xk = (x*1-1)/(x-1)
proof:
AR B 5 Gl b Gl R B
Xy = X * %2 * 32 4. BRI
XY=y = xk+1 2 1
y(x-1) = xk+1-1

y = (xX*1-1)/(x-1)

Solve Tl =¢
Tin)=3Tn/2) +cn (cont)

K : :
T(n)=p, 3cn/2

o =0
= "”Z:ﬂ(%) K1
B ()}:+1 _1 e 1 -

(3)-1 (x =1)

Solve Tl =¢
Tin)=3Tn/2) +cn (cont)
3&: 31ng3ﬂ
3cn—=3cn—;
2 2
3 31ng3f‘z alﬂg.b F
= ACH
() - (blngb r:z)l':'gb v
— BCBIDgE 71
log, a
_ (1log, n} 108
:30(}?1&%23) —(b)
— Hlngb &

_ O(Hl.sas...)

divide and conquer — master recurrence

T(n) = aT(n/b)+cn for n > b then

a >bk = T(n)=en"™®*?) [many subprobs — leaves
dominate] ___omw——

a <bk = T(n)=0(n% [few subprobs — top level
dominates] —

a=bk =T(n)=0 (n*logn) [balanced — all log n levels
contribute]

Fine print:

az1,b>1,¢,d k=z0:T(1)=d; n= bt forsomet> 0;
a, b, k, tintegers. True even if it is | n/b | instead of n/b.

master recurreice: II}JLO{T}f sketch

Expanding recurrence as in earlier examples, to get
Tn)=n"(d+cS)

where h =log,(a) (tree height) anf = z e . where x = b*/a.

Ifc =0 the sum S is irrelevant, and T(n)= C}{ nh): all the work
happens in the base cases, of which there are nh, one for each leaf
in the recursion tree.

If ¢ = 0, then the sum matters, and splits into 3 cases (like previous
slice):
ifx <1,then S <x/(1-x) = 0O(1). [Sis justthe first log n terms of
the infinite series with that sum].

ifx=1,then S =log,(n)=0O(logn). [all terms in the sum are 1
and there are that many terms]

if x> 1,then S = x « (x"*og,(-1)/(x-1). After some algebra,
nh* S = 0(n%)

Example:
Matrix Multiplication —

Strassen s Method

Multiplying Matrices

G 9 H3 Gy Byl &y b3 by

S Em SR M|y byl by by by

G31 Uy Gz Gy byl by by By
Gy Ay Gy Gy | ||Pa| B by Dy

by +aphy + iy +ayby

o

[

%’.11’511 + ctyyy, b ﬂmf’@ by + by, + @by + by,
r-’12153'11 T ﬂzmzabn tayby Gyby tapby +apby +ayby,

o

by + by + by + ayby

o

gy + by by tay by gy tagby + by Hayby, g by + by + by +ay by

o

| @y Qygby T by tayby @by t by +apby tayby, @yibyy + Gypbyy + by + @by |

n° multiplications, n3-n? additions

Simple Matrix Multiply

fori=1ton
forj=1ton
Clij]=0
fork=1ton
Clijl = Cli)] + Ali.k] * Blk,J]

Multiplying Matrices

‘5114_ g by ’5]14_
“a |, N2 by by
G3p Uy Gz Gy by by by By
Gy Ay Gy Gy | [Py bp by by

gy +apbyy +aphy +ayby

o

a0y + iy by tayby | dyby by tapby +ay by
e _-._.5_.

by + by eyt byy | by +ayby by + ayby,
by + by +anby tay by ayby +agby tagshy +ay by,

o

yibyy + by +abyy + by,

2aybyy + gy, + by +ay by

o

o

|y by + Ly T by tayby Qb t by b + auby, Py + Cygbyy + yabyy + 2Dy |

Multiplying Matrices

i 9 | %3 Gy by by by by

Sl B | by by by by

G31 Uy Gz Gy by by | by By
Gy Ay Gy Gy | [Py Bp | by by

.
ay oy T by Helaby +ay by) by +apby +mb4z o dyby tapby +aphy +ayby
dybhy Qb Linbe + EE#*'_E'__"M/ dybyy + by b by | o ayby +anby +anby +ayby

by + by "'mb-u by + by + by +ay by

|y by + Ly T by tayby Qb t by b + auby,

o

2aybyy + gy, + by +ay by

o

Py + Cygbyy + yabyy + 2Dy |

Multiplying Matrices

o

by +apbyy +aphy +ayby

o P B e, taybe T dgb,,

@iy T gl T lpthr TRy Ty

|y T dpy by ayby | apbitagoy + apby tayby,

31

o

Qypby] Ty Tt T by

Multiplying Matrices

F
o

Counting arithmetic operations:
@) = 8T(n/2) + 4(n/2)2= 8T(n/2) + n2

Multiplying Matrices

i if N =1
T(n)= <

8T(n/2) +n2 ifn>1

-

By Master Recurrence, if
T(n) = aT(n/b)+cnk & a > bX then «—

T(n) = &M *)=0N":%)=60n’)
e

Strassen’ s algorithm

Strassen’ s algorithm

Multiply matrices using / instead of © multiplications
(and lots more than 4 additions)

T(n)=7 T(n/2)+cn?
7>22 s0 T(n)is ®(1#%’) which is O(n28")

Asymptotically fastest know algorithm uses O(n<37°)
time
not practical but Strassen’ s may be practical provided
calculations are exact and we stop recursion when
matrix has size about 100 (maybe 10)

The algorithm

P,=A(By+ Byy) P,= Ay (Bt
| Bzz) -
3= (Aq1- Aq2)Byy Ps= (Axx- Ay)Box

P (AZZ A12)(BZ1 822)
B,1)

{ = (A41- Ax)(B; = S
fﬁ@ A12)(B11+ Bzz)
C,=P,+P, C,r = P+P,+P,-

Pz

E-Ki’llllpl{i‘:
C mmting Inversions

Inversion Problem

Leta,,...a, beapermutationof1..n
(@,) Isan inversion If | < jand a; > g

4.6,1,7,3 2,9

";_‘_'—"“-_.__-#

Problem: given a permutation, count the number
of Inversions

This can be done easily in O(n?) time
Can we do befter?

Application

Counting inversions can be use to
measure closeness of ranked preferences
People rank 20 movies, based on their

rankings you cluster people who like the
same types of movies

correlation

Inversion Problem

Leta,,...a, beapermutationof1..n
(@, &) Isan inversion If I < jand a; > g

4.6,1,7,3 2,9

Problem: given a permutation, count the number
of Inversions

This can be done easily in O(n?) time
Can we do befter?

Counting Inversions

11 (1214 |1 |7 (2 (3 (15 |5 |16 |8 |6 |13 |10 |14

Count inversions on lower ha
Count inversions on upper half

Count the inversions between the halves

Count the Inversions

11 112 |4 T |2 15 5 |16 s 13 (10 | 14
, ©
M |12 |4 { |2 15 9 |5 |16 13 (10 |14
19
44
11 |12 T 1519 |5 |16 |18 |6 |13 |10 |14

Problem — how do we count

iInversions between sub problems In
O(n) time?

Solution — Count inversions while merging

2 |3 |4 |7 [11 |12 |15 5 |6 |8 |9 [10]13 |14

Standard merge algorithm — add to inversion count
when an element is moved from the upper array to the
solution

‘Counting Inversions while merging

2 83 5 Z ow B S{
) =
Ag,samuzu,li_:
5 [8 |9 |16 6 |10 (13 |14

Indicate the number of inversions for each element detected when merging

Inversions

Counting Inversions between two sorted lists
O(1) per element to count inversions

! i

X | X | X | X [X | X |X Y |Y |Y |¥Y Y (¥ |Y|Y

Algorithm summary

Satisfies the “Standard recurrence”
T(n) =2 T(n/2) +cn
_'__._‘-;...-l__"—_ —

A Diwvide & C onquer E-};::unple:
Closest Pair of Pomts

closest pair of pomts: non-geometric version

Given n points and arbitrary distances between

d

them, find the closest pair. (E.g., think of

Istance as airfare — definitely not Euclidean

distancel)
f-- 5ia il i
ﬂ) ez
g P r S ——=9
— " (... and all the rest of the,("} edges.. 4
\ 2 "-——-__Fiji_ f : b
e
\ d N |
\ - | . 2 \
'. P J o i,
I"'., ,f”f A \-. \b

Must look at all n choose 2 pairwise distances, else
any one you didn't check might be the shortest.

Also true for Euclidean distance in 1-2 dimensions?

closest pﬂir of pouts: 1 dimensional version

Given n points on the real line, find the closest
pair

*—@ *—0 *—0 *0—@ @ &

Closest pair Is adjacent in ordered list
Time O(n log n) to sort, If needed
Plus O(n) to scan adjacent pairs

Key point: do not need to calc distances between
all pairs: exploit geometry + ordering

closest p:-ui of pouts: 2 dimensional version

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.

Graphics, computer vision, geographic information systems, molecular
modeling, air traffic control.

Special case of nearest neighbor, Euclidean MST, Voronoi.

fast clogest pair inspired fast algorithms for these prohlems

Brute force. Check all pairs of points p and ¢ with ®(n2)
comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate. 3

Just to simplify presentation

closest ljf:li[of p{:}mtsc. 2d. Euclidean distance: 1% try

Divide. Sub-divide region into 4

guadrants.

closest pair of lj{?}jllTS st try

Divide. Sub-divide region into 4
guadrants.

Obstacle. Impossible to ensure n/4 points
In each piece.

e @ L]
»
] ® ..
] »
o
"‘ » L]
» L] -
] L e @

closest pair of pounts

Algorithm.

Divide: draw vertical line L with = n/2 points on each
side.

closest pair of pounts

Algorithm.

Divide: draw vertical line L with = n/2 points on each
side.

Conquer: find closest pair on each side, recursively.

L L ® " L
L 3 L L
L
L 3 i o b o
: o 21
L % . L]
[]
120 L ° ® ° o
L] [] . *
b]

closest pair of p{?}ﬂlts

Algorithm.
Divide: draw vertical line L with = n/2 points on each side.
Conquer: find closest pair on each side, recursively.
Combine: find closest pair with one point in each side.

o]

Return best of 3 solutions. SEEMS
like
@) 7
’ L . e
]] o
L] > " ’
g g le j
] o 21
® o e &
[]
a
12 o b ® ® .
]] . *
L ®

closest pair of pounts

Find closest pair with one point in each
side, assuming distance < o.

closest pair of pounts

Find closest pair with one point in each
side, assuming distance < o.

Observation: suffices to consider points within 6 of line
L.

closest pair of pounts

Find closest pair with one point in each
side, assuming distance < o.

Observation: suffices to consider points within 6 of line L.
Almost the one-D problem again: Sort points in 25-strip by
their y coordinate.

o L * . o
] B L]
L
. ° o -
o
‘ 03 ¢ 21 "
o L
]
12 . |© . o
o
. o 2 .
@ o

closest pair of pounts

Find closest pair with one point in each
side, assuming distance < o.

Observation: suffices to consider points within 6 of line L.
Almost the one-D problem again: Sort points in 25-strip by
their y coordinate. Only check pts within 8 in sorted list!

o L * . o
] B L]
L
. ° o -
o
‘ 03 ¢ 21 "
o L
]
12 . |© . o
o
. o 2 .
@ o

closest parr of p{:}jnts

Def. Let s, have the i" smallest
y-coordinate among points
In the 20-width-strip.

Claim. If [i—]| > 8, then the
distance between s, and

(=)

Va5

S.
IS > 0. g f
Pf. No two points lie in the .2%@

same Yaa-hv-%0 box:

@

@ s

closest par :-1lg7zj:+ri’r1]111

Closest-Pair(p;, ., Py} {
ifin <= 2??) return 27
i oo
Compute separation line L such that half the points
are on one side and half on the other side.

8, = Closest-Pair (left half) =
b, = Closest-Pair(right hale

6 = min(5;, &) —

Delete all points further than & from separation line L

Sort remaining points p[l] pim] by yv-coordinate.

for i = 1. .m
K = 1 FY e
while i+k <= m &&
b= min(d, dist i+k]) ;

k++;

L

return 5.

closest pﬂir of p{t}ims: é]llﬂl}TSiS

Analysis, I: Let D(n) be the number of pairwise
distance calculations in the Closest-Pair Algorithm when
run on n = 1 points

Din) < {m{mzﬂ) - zj} = Py = ooloEn)

BUT —that's only the number of distance
calculations

What If we counted comparisons?

closest p:-lir of pif}illTS. nu:ﬂyﬂs

Analysis, II: Let C(n) be the number of comparisons
between coordinates/distances in the Closest-Pair
Algorithm when run on n = 1 points

0 n=1 5
< -
C(n) = ! 36T 7) +riogn, sl l = C{n)=0(n log” n)
——

for some constant &

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points from scratch each time.

Sort by x at top level only.
Each recursive call returns 8 and list of all points sorted by vy
Sort by merging two pre-sorted lists.

T(n) = 2T(ni2) + O(n) = Ti(n) = O(nlogn) W

15 1t worth the effortr

Code Is longer & more complex

O(n log n) vs O(n?) may hide 10x in
constant?

How many points?

= Speedup:
n? /(10 nlog, n)

10 | 0.3
100 | 1.5
1,000 | 10
10,000 | 75
100,000 | 602

1,000,000 | 5,017 w
10,000,000 | 43,004

C‘}'Dillg From Code to Recurrence

gt}ﬂlg from code to recurrence

Carefully define what you're counting, and write
It down!

“Let C(n) be the humber of comparisons between sort

keys used by MergeSort when sorting a list of length n
= 1"

In code, clearly separate base case from
recursive case, highlight recursive calls, and

Write Recurrence(s)

merge s o1t

Base Case
MS(A: arra[1 .n]) returns array[1..n] {

If(n 1) return A

h

Merge(A,B: array[1..n]) {
New C: array[1..2n];
a=1; b=1;
Fori =110 2hufemy,
Cli] F Ala], B[b] and a++ or b++
Return C; ="
h

1

€~

Recursive
calls

One
Recursive
| evel

Operations
being
counted

the recurrence

Base case
0o— if n=1

it = izc(n D)+ (n-1) ifn>l

Recursive calls

Total time: proportional to C(n) et
(loops, copying data, parameter passing, etc.)

g@iﬂg from code to recurrence

Carefully define what you're counting, and write
It down!

“Let D(n) be the humber of pairwise distance
calculations

in the Closest-Pair Algorithm when runonn = 1
points”

In code, clearly separate base case from
recursive case, highlight recursive calls, and

Write Recurrence(s)

Basic operations: 5 closest pawr algonthm

distafeerealcs

Clos T {
Cif(n <= 1) retur& Base Case 0

Compute separation line L such that half the points
are on one side and half on the other side.

8, .
20(n/ 2

5, rtrigitt—TRaltf Fecursive calls (2] N (n/2)
O
Delete all points further than & from separation line L Eiti
Sort remaining points p[l] pim] by v-coordinate. /rEﬁgLETe
N - Bha_suz ﬂperatmrlws atl

k =1 this recursive leve

while itk <=_nfCi&—phi v < p[i]l.y + &

wetween pl[i] and plitk]) i

return 5.

closest pﬂir of p{t}ims: é]llﬂl}TSiS

Analysis, I: Let D(n) be the number of pairwise
distance calculations in the Closest-Pair Algorithm when
run on n = 1 points

Din) < {m{mzﬂ) - zj} = Py = ooloEn)

BUT —that's only the number of distance
calculations

What If we counted comparisons?

g@iﬂg from code to recurrence

Carefully define what you're counting, and write
It down!

“Let D(n) be the number of comparisons between
coordinates/distances in the Closest-Pair Algorithm
when run on n = 1 points”

In code, clearly separate base case from
recursive case, highlight recursive calls, and

Write Recurrence(s)

Easic operations:

closest pair algonthm

COMPpAarisons

los T - i
\P1r 7 { Recursive calls (2)

rs

are on one side and half on the/dther sides

pute separation line L such t {half the points

kyn log n

gzl Closesi—Pairtefi—hs f

losesST=Pair{rigiit hal

Delete all points further than & from separdtion line L

aining points p[l] pim] by yv-coordinate.

@

for i = 1..m Ba_alc Gperatlaﬂs at
_ this recursive level
k=1
while [i].v¥ +

pli] and pl[i+k]) ;

return 6.

2C(n 4 2)

kN lag n

ne
FecUrshye
==l

closest pﬂir of p{f}mts; nn:-ﬂysis

Analysis, II: Let C(n) be the number of comparisons of
coordinates/distances in the Closest-Pair Algorithm
when run on n = 1 points

0 rn=1 2
< —
Sl { 2C(nf2) + knlogn n=l } = Cl=Cllogn

for some &, <, +&, +i,+7

Q. Can we achieve time O(n log n)?

A. Yes. Don't sort points from scratch each time.
Sort by x at top level only.
Each recursive call returns 8 and list of all points sorted by y
Sort by merging two pre-sorted lists.

T(n) = 2T(ni2) + C(n) = T(n) = O(nlogn)

Integer Multiplication

mteger arthimetic

—_—

Add. Given two n-bit
integersaand b,
computea+b.

eal| (Wi
e | R
B | e I
SO IS
en | s sE s
) | [RECEE
AT DN e o e S

O(n) bit operations|

mteger arithimetic

Add. Given two n-bit

1 1 1 1 1 1 I 1
integersaand b, i 1 0 1 0 1 0
computea+b, ottt 110
1 0 1 0 1 0 a 1 i
["Cff(ﬁjnlﬁi't operatio ns}
' 8 R I
Lpedony
Multiply. Given two n-bit A s
. gl bis
integers a and b, il i
compute a x b. 4 PO ILO)
t ’"] TETLOED L0 F00 §1
The “grade school” method:,
= 5 _ : , 1]1a]1]ol1]a]1
®(n<) bit operations. ol looiiets
; Q11|01 (000 0040405010401

divide & congquer 1111_11t11:r]1{::-1t1011 warnmip

To multiply two 2-digit integers:
Multiply four 1-digit integers.
Add, shift some 2-digit integers to obtain result.

X = ey e v v,

vy = 10y + y, o
xy = (10 I1+ID) (10 ¥ +ylil) ﬁ Hn'".'-"n"'(

= 100 - x3, + 10 (:s:lyn+xny1) FX Bl ...

L — Ty = = o

Same idea works for long integers — || Y

: : : : 1 2 =

can split them into 4 half-sized Ints SRt
gt 5 f

dirvide & congquer 1111_11t11:}11+;:ﬂ’r1{'+11. wWarmup

To multiply two n-bit integers:
Multiply four 2n-bit integers.
Add two zn-bit integers, and shift to obtain result.

mid
X 277X+ X N B
y = 2"y + y, Sl .
i nid nid
Ay = (2 I1+In)(2 J’1+yn) 0100 0001 %%
M nid
= 27.xy + 2 '(xlyn+xny1)+xnyn el Bl YoV
a0 0ol o
Tn) = 4T(i2) + Ox) = T(r)=O?) S B PR %Yy
R N
Teomeire calk add, hft repit e N e) e B e T e R =l]

.-'=T=--"'==W

Assumes n is a power of 2

key trick: 2 multiplies for the price of 1:

Q"ﬂ:%{

Well, ok, 4 for 3 is

more accurate...
(2’”2 X+ xn)(: _

= x + X
= Mt
= (I1 Eis In) (}’1 "‘_yn)__

@ + (¥, + X 3) +

(Ilyn+xny1) = ab-xy — X ¥,

Karatsuba mul tll_".‘rh{_*ﬂ’[l{?}ll

To multiply two n-bit integers:
Add two “zn bit integers.
Multiply three zn-bit integers.
Add, subtract, and shift “zn-bit integers to obtain result.

A e T
dr = Enm'.}ﬁ +)y
3 i Rlmand Enm-[;{l_}fn+xu}flj o i
= R Enm-[(;{1+xnjl(yl+_}fn] — xl_}fl—xnyE,j P
A B A c &

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-
digit integers in O(n'~%%) bit operations.

Te) = T([ni2]) + T{[ni2]) + T 14[n02]) + ©@)
: reqmsire calk ; add, sibdract, chit

stoppy version & Tin) = 30 (a2 + 0

= T(x) = Om™=) = o)
-~

[Karatsuba 111111’[11}11{?11’(1011

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-
digit integers in O(n'~%>) bit operations.

—_—

T(e) = T([nr2]) + T ni2]) + T 1+[ni2]) + O

O o M
enmsire calk wdd, smibtract, chit
stoppy version & Tin) = 30 (al2)+ 00
= T(xn) = 0=y = oY)

T (w) £ BTx) « O(n)

multiphication — the bottom lme

Naive: ®(n?)
Karatsuba: ®(n'°9-)
Amusing exercise: generalize Karatsuba to do 5
size
n/3 subproblems — ®(n!46-)
Best known: ®(n log n loglog n)
"Fast Fourier Transform”

but mostly unused in practice (unless you need really
big numbers - a billion digits of «t, say)

High precision arithmetic /S important for crypto

Polynonual Multiplication

Another D&C Example: Multiplying Polynomials

Similar ideas apply to polynomial
multiplication

We' Il describe the basic ideas by multiplying
polynomials rather than integers

In fact, it's somewhat simpler: no carriesl!

Notes on Polynomials

These are |ust formal sequences of
coefficients so when we show something
multiplied by xX it just means shifted k places
to the left — basically no work

Usual

Polynomial
Multiplication:

3%+ 2x + 2
2. 3x+1
ﬁ}%+ 2X + 21
-9x3 - Exz - BX
3x4 + 2x3+ 2%
3x4 - 7x3 \}f} 4x + 2

Polynomial Multiplication

Given: EE.
Degree m-1 polynomials P and Q EEEEEEE
P =@y +a; Xt agxt+... F@ xS+ ar o
Q=byg+bix+ b, x?+ ... + b x™? + b ,x"
Compute:
Degree 2Zm-2 Polynomial P Q
PQ=ab, +(asb+a by) x + (aﬂbg+a%b1 +a,b,) X2
+.+ (am Ebm 1A ’1bm E) X b sz_z
Obvious Algorithm:
Compute all a)b, and collect terms

® (m?) time

Assume m=2Kk

P=(a;+a; X+a;x<+ ..+ ak_gzx‘{-i + a“ﬁqup +
(a, +a . X+ cod F B oK R o XY K

=Py + Py xk

Q=Q,+ QXK

PQ = (Po+PxX)(Qu+Qqx")

= PoQq + (P1Qy+PyQq)x* + P4 Qx*

4 sub-problems of size k=m/2 plus linear combining
T(M)=4T(m/2)+cm
Solution T(m) = O(m?)

Karatsuba' s Algorithm (T

|
]
|
A better way to compute terms

Compute

PaQ

I:’“IGLI

(Py+P {(Qy+Q,) which is P,Q+P,Q,+P,Q,+P,Q,
Then

PoQ+P,Qp = (Py+P (Q+Qy) - Py Q- P4 Q,
3 sub-problems of size m/2 plus O(m) work

Tim)=3T(m/2) + cm

T(m) = O(m>) where v =log,3 = 1.585...

e ————

_

Karatsuba: Detalls P= 1rmm Fm
Q = I+LIE PR

____PFrodl |

_ Prodo |
——
PolyMul(P, Q): 2m-2 m m2 0

Il P, Qare length m = 2k vectors, with P[i], Q[i] being
Il the coefficient of X' in polynomials P, Q respectively.

if (m==1) retun (P[0]*Q[0]):

Let Pzerobe elements 0..k-1 of P; Pone be elements k..m-1
Qzero, Qone : similar

Prod1 = PolyMul(Pzero, Qzero); /l resultis a (2k-1)vector
Prod2 = PolyMul(Pone, Qone); /f ditto

Pzo = Pzero + Pone; // add corresponding
elements

Qzo = Qzero + Qone; {f ditto

Prod3 = PolyMul(Pzo, Qzo); Il another (2k-1)-vector

Mid = Prod3 — Prod1 — Prod2; /l subtract corr. elements

R = Prod1 + Shift(Mid, m/2) + Shift(Prod2.m)// a (2m-1)vector
Return(R);

Multiplication — The Bottom Line

Polynomials
Naive: ®(n2)
Karatsuba: ®(n'>%>-)
Best known: @(n log n)
"Fast Fourier Transform”
Integers

Similar, but some ugly details re: carries, etc.
gives ®(n log n loglog n),
but mostly unused in practice

Median and Selection

Computing the Median

Median: Given n numbers, find the nymber
of rank n/2 (to be precise, say:In/2l)

Selection: given n numbers and an integer
K, find the k-th largest

E.g., Median is ‘"n/Q l—nd largest

“order statistics™

Can find max with n-1 comparisons
Can find 2"d largest with another n-2
3" largest with another n-3

etc.: k" largest in O(kn)

What about k > log n?

Can we do better?

Select(A, k)

F\' | T_'t:___,
Select(A, k){’{ 5 welle, f

;?Chmse X from A
S;={yinAly<x)
Sy={yinAly=x}
S;={yinAly >x)
it (1S4] 2 k)

return Select(S;, k)

else if (|S4] + |S,| 2 K)
return x

clse

return Select(S;, K - [S4] - [S4])

} 5

Randomized Selection

Choose the element at random
Analysis (not here) can show that the
algorithm has expected run time O(n)

Sketch: a random element eliminates, on
average, ~ 7z of the data)}

Although worst case ilbeit
improbable (like Quicksort), for most
purposes this is the method of choice

Worst case matters? Read on...
_#ﬁﬂ-

Deterministic Selection

What is the run time of select if we can
guarantee that “choose” finds an x such
that |S,| <3n/4 and |S,;| <3n/4

BFPRT Algorithm

A very clever “choose” algorithm . . .

Split into n/5 sets of size 5
M be the set of medians of these sets
Return x = the median of M

¥ Il
ul

V. Pratt

R. Floyd

M. Blum

Pnract T= i

BFPRT runtime

Split into n/5 sets of size 5
Let M be the set of medians of these sets
Choose x to be the median of M

Construct S, |, S, and S, as above
Recursive call in S, or S,

To show: |S,| <3n/4, |S;| <3n/4)

n/5 + 3n/4 = 0.95n ﬁ(@wrst case

large

small

Median of Medians

b,

A

NB: conceptual; algorithm finds median(s), but does not sort

large

small

Median of Medians

4 Points 2 x, . NOT in S, S e
= 3n/10 of them e :
\ﬁ__‘.ﬂ# |

" 2 C Bottom Line:
17 recursive call
! on S, or S;
| 2 includes ﬂnﬁh'
> S about 70% of
- - points

"~ Points =x, »= NOT in S,
= 3n/10 of them

NB: conceptual; algorithm finds median(s), but does not sort

BFFPRT Recurrence

= /n/10 points in subproblem

More precisely, various fussiness:
[H/SWgroups, all but (possibly) last of size 5
Upper/lower half of EHH/EJ/QJQroupS excluded
With some algebra, mch that:

T(n) = T(/n/10+a) + T(n/5+b) + c n

. e ——— -—"=-'-_'F

BFFPRT Recurrence

T(n) =[T(7n/10+a) + T(n/>+b) A c n
< lﬂc, T#

Lc'icv\ 4 ng@-_b)

B,
P .
— ?\Oc:m]

Bﬁﬂid% V) {ZQGLH?T(m\
£ a8 %(3 M. Saw
niaﬂ(ﬁ;ﬁ)

[
¢ .
Prove thaﬁT(n) <=20¢c n&ur n> 20(a+bg

d & c summary

ldea:

“Two halves are better than a whole”
Ifthe base algonthm has super-linear complexity.

‘If a little’'s good, then more's better”
repeat above, recursively

Analysis: recursion tree or Master
Recurrence

Applications: Many.

Binary Search, Merge Sort, (Quicksort),
counting Inversions, closest points, median,
iInteger/ polynomial/matrix multiplication,
FFT/convolution, exponentiation,...

