CSEP 521
Applied Algorithms
Autumn 2009
Traveling Salesman Problem

Variations

- Hamiltonian Cycle
- Is there a cycle that visits each vertex exactly once
- Ignores costs
- Triangle inequality constraint
$-\mathrm{C}(\mathrm{u}, \mathrm{v}) \leq \mathrm{C}(\mathrm{u}, \mathrm{x})+\mathrm{C}(\mathrm{x}, \mathrm{v})$
- Euclidean Traveling Salesman
- Vertices are points on the plane and the cost is the Euclidian distance between them
- Implies triangle inequality

Why Traveling Salesman?

- Old well-studied problem
- Example of an NP-hard problem
- These problems are very hard to solve exactly
- No polynomial time algorithms known to exist
- Interesting and effective approximation algorithms
- Good practical algorithms
- Simple algorithms with provable approximation bounds

Applications

- Telescope planning
- Route planning
- coin pickup
- mail delivery
- book order pickup in the Amazon warehouse
- Circuit board drilling

Approximation Alg. vs. Heuristic

- Approximation Algorithm
- There is a provable guarantee of how close the algorithm's result is to the optimal solution.
- Heuristic
- The algorithm finds a solutions but there is no guarantee how good the solution is.
- Heuristics often outperform provable approximation algorithms.

Lecture 2 - Traveling Salesman, 7
NP -Completeness

NP-Completeness
NP-Completeness

8

3. Connect Vertices in Marking Order

Marking Order $=a, b, c, d, e, f, h, g$

Evaluation

- Time and Storage
- Time $O\left(n^{2} \log n\right)$ with Kruskal's Algorithm
- Storage O(n^{2})
- Quality of Solution H
$-\mathrm{C}(\mathrm{H}) \leq 2 \mathrm{C}\left(\mathrm{H}^{*}\right)$ where H^{*} is an optimal tour
- This is a "2-approximation algorithm"
- Same approximation bound applies to case of triangle inequality

Lecture 2 - Traveling Salesman,
NP-Completeness

Proof of Approximation Bound

- Setup
- T minimum spanning tree
- W the depth-first walk of T
- H the tour computed by the algorithms
$-\mathrm{H}^{*}$ an optimal tour

Depth-First Walk

Proof of Approximation Bound

1. $C(W)=2 C(T)$
2. $\mathrm{C}(\mathrm{H}) \leq \mathrm{C}(\mathrm{W})$, triangle inquality
3. $C(H) \leq 2 C(T)$, last two lines
4. $\mathrm{C}(\mathrm{T}) \leq \mathrm{C}\left(\mathrm{H}^{*}\right)$, minus an edge H^{*} is a spanning tree
5. $\mathrm{C}(\mathrm{H}) \leq 2 \mathrm{C}\left(\mathrm{H}^{*}\right)$, last two lines

Solving TSP Exactly

- Branch-and-Bound

$$
\text { - } \mathrm{n}<25 \text { ? }
$$

- Linear Programming
- n < 100
- Cutting Plane Methods for Euclidian case
- $\mathrm{n}<15,000$ with "concord"
- see http://www.math.princeton.edu/tsp/

Solving TSP Approximately

- 3/2 - approximation algorithm of Christofedes
- Polynomial approximation scheme for Euclidian TSP by Aurora (1998), Mitchell (1999)
- To get within ($1+\varepsilon$) of optimal can be done in time polynomial in $1 / \varepsilon$ and n.
- These are not practical

Solving TSP Approximately, Practically

- Local Search
- Lin-Kernighan method
- Simulated Annealing
- Genetic Algorithms
- Neural Networks

Local Search Algorithms

- Start with an initial solution that is usually easy to find, but is not necessarily good.
- Repeatedly modify the current solution to a better nearby one. Until no nearby one is better.

Lin-Kernighan

- Empirical $O\left(\mathrm{n}^{2.2}\right)$ time
- Finds optimal in most examples <100 points
- Excellent Implementations
- Can easily handle hundreds of thousands of points

