

2

- a cost function C from E to the reals.
- Output: A cycle that visits each vertex exactly once and is minimum total cost.

Why Traveling Salesman?

- Old well-studied problem
- Example of an NP-hard problem
 - These problems are very hard to solve exactly
 - No polynomial time algorithms known to exist
- Interesting and effective approximation algorithms
 - Good practical algorithms
 - Simple algorithms with provable approximation bounds

Lecture 2 - Traveling Salesman, NP-Completeness 7

Approximation Alg. vs. Heuristic

- Approximation Algorithm
 - There is a provable guarantee of how close the algorithm's result is to the optimal solution.
- Heuristic
 - The algorithm finds a solutions but there is no guarantee how good the solution is.
 - Heuristics often outperform provable approximation algorithms.

Lecture 2 - Traveling Salesman NP-Completeness 8

NP-Completeness

14

16

- 1. C(W) = 2 C(T)
- 2. $C(H) \leq C(W)$, triangle inquality
- 3. $C(H) \leq 2 C(T)$, last two lines
- 4. $C(T) \leq C(H^*)$, minus an edge H* is a spanning tree
- 5. $C(H) \leq 2 C(H^*)$, last two lines

Lecture 2 - Traveling Salesman, NP-Completeness

Solving TSP Approximately, Practically

- Local Search
 - Lin-Kernighan method
- Simulated Annealing
- · Genetic Algorithms
- Neural Networks

Lecture 2 - Traveling Salesman. NP-Completeness

19

Local Search Algorithms

- Start with an initial solution that is usually easy to find, but is not necessarily good.
- Repeatedly modify the current solution to a better nearby one. Until no nearby one is better.

Lecture 2 - Traveling Salesman NP-Completeness 20

