CSEP 521
Applied Algorithms
Autumn 2009
Contiguous Ordering - PQ Trees

DNA Sequence Reconstruction

- DNA can only be sequenced in relatively small pieces, up to about 1,000 nucleotides.
- By chemistry a much longer DNA sequence can be broken up into overlapping sequences called clones. Clones are 10's of thousands of nucleotides long.

Problem to Solve

- Given a set of tagged clones, find a consistent ordering of the tags that determines a possible ordering of the DNA molecule.

$$
\begin{array}{lcl}
& \text { clone } & \text { tag } \\
\text { input } & \text { 1. } & \{\mathrm{E}, \mathrm{G}\} \\
& \text { 2. } & \{\mathrm{F}, \mathrm{G}, \mathrm{H}\} \\
& \text { 3. }\{\mathrm{A}, \mathrm{I}\} \\
& \text { 4. }\{\mathrm{C}, \mathrm{D}\} \\
& \text { 5. }\{\mathrm{E}, \mathrm{G}\} \\
& \text { 6. }\{\mathrm{A}, \mathrm{H}, \mathrm{I}\} \\
& \text { 7. }\{\mathrm{B}, \mathrm{D}\} \\
& \text { 8. }\{\mathrm{F}, \mathrm{H}\} \\
& \text { 9. }\{\mathrm{A}, \mathrm{~B}, \mathrm{D}, \mathrm{I}\} \\
& \text { 10. }\{\mathrm{C}, \mathrm{D}\}
\end{array}
$$

output
EGFHAIBDC

PQ-trees

Contiguous Ordering Solutions

Contiguous ordering problem
Solution
$U=\{A, B, C, D, E, F, G, H, I\}$
$S=\{\{E, G\}$
$\{F, G, H\}$
\{A, I\}
$\{\mathrm{C}, \mathrm{D}\}$
$\{\mathrm{C}, \mathrm{D}\}$
$\{\mathrm{E}, \mathrm{G}\}$
A, G\}
A, H, I
$\{B, D\}$
$\{F, H\}$
\{A, B, D, I\}
\{C, D\}\}

Linear Time Algorithm

- Booth and Lueker, 1976, designed an algorithm that runs in time $\mathrm{O}(\mathrm{n}+\mathrm{m}+\mathrm{s})$.
$-n$ is the size of the universe, m is the number of sets, and s is the sum of the sizes of the sets.
- It requires a novel data structure called the PQ tree that represents a set of orderings.
- PQ trees can also be used to test whether an undirected graph is planar.

PQ Trees

- PQ trees are built from three types of nodes

Example PQ-Tree

B D
The frontier of T defines the ordering $F(T)=F C A B D E$, just read the leaves left to right.

T ' is equivalent to T if T can be transformed into T by reordering the children of P nodes and reversing the children of Q nodes

8

Orderings Defined by a PQ Tree

- Given a PQ tree T the orderings defined by T is
$-P Q(T)=\left\{F\left(T^{\prime}\right): T^{\prime}\right.$ is equivalent to $\left.T\right\}$

There are $6 \times 2 \times 2=24$ distinct orderings in $P Q(T)$.

Generally, if a $P Q$ tree T has $q Q$ node and $p P$ nodes with number of children $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{p}}$, then the number of orderings in $P Q(T)$ is $2^{q} \mathrm{C}_{1}!\mathrm{c}_{2}!\ldots \mathrm{c}_{\mathrm{p}}$!.
$n!=1 \times 2 \times \ldots \times n$
PQ-trees

PQ Tree Solution for the Contiguous Ordering Problem

- Input: A universe U and a set $S=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ of subsets of U.
- Output: A PQ tree T with leaves U with the property that $\mathrm{PQ}(\mathrm{T})$ is the set of all orderings of U where each set in S is contiguous in the ordering.

PQ Tree Restriction

- Let $U=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}, S=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$, and $T a$ PQ tree.
- We will define a function Restrict with the following properties:
- Restrict (T, S) is a $P Q$ tree.
$-P Q($ Restrict $(T, S))=P Q(T)$ intersect $P Q\left(T^{\prime}\right)$ where

High Level PQ tree Algorithm

- Input is $U=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, and subsets S_{1}, S_{2}, , S_{m} of U .
- Initialization:
$-T=P$ node with children $A_{1}, A_{2}, \ldots, A_{n}$
- Calculate m restrictions:
- for $\mathrm{j}=1$ to m do
$\mathrm{T}:=\operatorname{Restrict}\left(\mathrm{T}, \mathrm{S}_{\mathrm{j}}\right)$
- At the end of iteration k :
$-\mathrm{PQ}(\mathrm{T})=$ the set of ordering of U where each set S_{1}, $\mathrm{S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}$ are contiguous.

Marking Nodes

- Given a set S and PQ tree T we can mark nodes either full or partial.
- A leaf is full if it is a member of S.
- A node is full if all its children are full.
- A node is partial if either it has both full and nonfull children or it has a partial child.
- A node is doubly partial if it has two partial children.

Marks of Nodes

Mark the leaves in S full.
Bottom up mark the nodes full or partial.
The members of S will become contiguous.
$S=\{A, C, F, H, I\}$

Restrict(T,S)

- Mark the full and partial nodes from the bottom up.
- In the process the marked leaves become contiguous.
- Locate the key node.
- Deepest node with the property that all the full leaves are descendents of the node.
- Restrict the key node.
- In the process of restricting the key node we will have to recursively direct partial nodes.
- Directing a node returns a sequence of nodes.

Restricting a P node with no Partial Children

PQ-trees
20

Linear Number of Nodes Processed

- Let n be the size of the universe, m the number of sets, and s the sum of the sizes of the sets.
- Number of full nodes processed $\leq 2 \mathrm{~s}$.
- Number of key nodes processed $=\mathrm{m}$.
- Number of partial nodes with partial children processed below the key node $\leq m+n$.
- Number of partial nodes with no partial children $\leq 2 \mathrm{~m}$.
- Number of partial nodes processed above the key node $\leq m+n$.

Number of Processed Nodes Amortized

Partials with Partial Children Below the Key Node

- Amortized complexity argument.
- Consider the quantities:
- $q=$ number of Q nodes, $\mathrm{cp}=$ number of children of P nodes.
- We examine the quantity $x=q+c p$
$-x$ is initially n and never negative.
- Each restrict of a key node increases x by at most 1 .
- Each direct of a partial node with a partial child decreases x by at least 1 .
- Since there are m restricts of a key node then there are most $n+m$ directs of partials with partial children.

Restricting a P Node with Partial Children

restrict a P node

PQ Tree Notes

- In algorithmic design only a linear number of nodes are ever processed.
- Designing the data structures to make the linear time processing a reality is very tricky.
- PQ trees solve the idealized DNA ordering problem.
- In reality, because of errors, the DNA ordering problem is NP-hard and other techniques are used.

Example of Data Structure Trick

- Linking the children of a Q node

