
Review Paper: Effective Binary Change Quantification for Defect Estimation Usman Shami and Junaid Ahmed

1

Review Paper: Effective Code Change Quantification for Defect Estimation

Usman Ahmed Shami (usmans@u.washington.edu), Junaid Ahmed (jun.ahmed@gmail.com)

1. Introduction

Program change analysis involves the effective

calculation of code units that are fundamentally

different in different versions of programs. This

can happen between successive versions of

binaries or between two milestones in a release

phase. The kind of changes also needs to be

determined so that we can filter out useless

noise in our analysis.

There are multiple ways to address these issues

and each of these has their own advantages and

disadvantages. In this report, we aim to analyze

a few of these techniques from an algorithmic

perspective and to critically examine the

consequences of using each of those.

Once we have the code change metrics in place,

we can use statistical regression co-efficient to

come up with metrics that can be used to

predict defects early in the release cycle of a

particular product. This will cover one of the

major implementations of the quantification of

code change.

2. Applications of Code Change Analysis

The successful detection and quantification of

code change has got quite a number of useful

applications, a few of these have been

described below:

2.1 Test Optimization

Test execution cycles can be optimized across

successive releases by executing only those test

cases that are found to hit the code paths that

have been altered.

2.2 Profile Propagation

This is the basic summary of code usage

statistics. To characterize the program behavior

proper profile data is required. To effectively

manage changing code profiles is not trivial as

thousands of lines of code might be changing in

brief periods. So, effective and fast binary code

change analysis can also help in code profile

change management. [1]

2.3 Regression testing

Regressions are internal bugs caused by code

change before it is shipped. During all the

phases of the SDLC (software development life

cycle), regressions guide the milestones and

software quality. It is easy to see that the

determination of software change leads to

lower costs in regression finding and fixing. [2]

2.4 Software Version Merging

This deals with refactoring of code and

versioning of subsequent code releases. Metrics

are also usually needed to determining the

amount of “real” code churn taking place

between different versions.

2.5 Software Security

Researchers need to determine the binary

changes in the binary releases to know if the

change can be determined by reverse

engineering and can be used to exploit systems

that have not been updated

3. Binary Code Change - The problem and

challenges

mailto:usmans@u.washington.edu
mailto:jun.ahmed@gmail.com

Review Paper: Effective Binary Change Quantification for Defect Estimation Usman Shami and Junaid Ahmed

2

We analyze binary change in comparison of

source code changes as it is a more reasonable

estimation of logical code changes.

The problem of matching binaries i.e. a set of

instructions, set of basic blocks and set of

functions in either two versions of the same or

similar executables can be defined as:

Suppose that a executable E’ is created by

modifying E. Determine the difference Δ

between E and E’. For a fragment f’ ∈ E’,

determine whether f’ ∈ Δ. If not, find the

corresponding origin of f’ in E.

and / or

Suppose that we have executables P and Q.

Find all fragments f‘ such that f’ ∈ P and f’ ∈ Q.

The above two problems i.e. comparing

different versions of the same executable or

two arbitrary executables that contain an

amount of common blocks is a difficult problem

due to compilation and optimization differences

at the instruction level. Some of these

challenges are:

 Two binaries might appear different

because different registers were

allocated.

 Due to compiler’s generation of

instructions according to pipeline of the

processor, the instructions might be in a

different order. Thus, if the same code

essentially exists in two executables, it

might appear out of order in one.

 Due to change in numerical offsets in

memory address operands. These

offsets often change from build to build

due to changes in data layout

 Compiler optimization leads to branch

inversions, in lining functions etc.

 Including binary changes that are direct

 Ignoring binary changes that are

indirect

4. The Graph Isomorphism Approach

The key point in the algorithm is to model the

executables using graph theory and analyze the

levels of isomorphism in the graphs of the

executables. [3] [4]

4.1 Algorithm

Given: Two executables named Old and New

4.1.1 Preprocessing:

The executables are preprocessed to obtain a

good disassembly for the same. Let the

disassembly of Old be denoted by O and the

disassembly of New be denoted by N. There are

many tools available for this in the industry (for

e.g. [5]) and this process is a different class of

problems and is not detailed here.

4.1.2 Setting up Graph Representation:

Disassembles mentioned above are represented

as a directed graph of graphs. The nodes in the

directed graph represent the disassembly of C

functions in the original source code. i.e. F =

{f1,f2……fn} . There are directed edges from a

node u to a node v if the function fu calls the

function fv.

Each function fi ∈ F is further represented as a

control flow graph. Control flow graph is a data

structure used to represent a procedure in

compilers where each node in the graph

represents a basic block, i.e. a straight-line

piece of code without any jumps or jump

targets; jump targets start a block, and jumps

end a block. Directed edges are used to

represent jumps in the control flow.

Review Paper: Effective Binary Change Quantification for Defect Estimation Usman Shami and Junaid Ahmed

3

Let us call the graph obtained from O as Go and

that from N as GN

Let us also define some additional notation.

Power Set: For any given set H, the power set of

H, written here as ᵽ(H), is the set of all subsets

of H. Thus in our case the power sets of Go and

GN are ᵽ(Go) and ᵽ(GN) respectively

Parent (v): A function Parent (v) which takes as

an input the vertex v and returns the parent u

of v.

Selectors(x, GN): Selector (x, GN) defines for a

given vertex x ∈ Go of a graph, and set of

vertices in another graph GN, a mapping that

returns either one node or nothing (empty set).

The one node returned is a node from GN that

is most similar to x. If there are multiple nodes

in GN with certain closeness, the mapping

returns an empty set (nothing). Some common

selectors can be:

- In-degree of the nodes: i.e. select nodes if

their in-degree is the same.

- Recursive Nodes: i.e. select nodes that have

a link to themselves

- A 3-tuple (α, β, γ) for a control flow graph

where α represents basic blocks in the

function, β represents the number of edges

linking them to form a CFG and γ

represents the number of sub function calls

in basic blocks

Property(Go, GN): Property(Go, GN) is a mapping

that maps for two graphs Go and GN with their

certain subset of nodes Go’ and GN’ . If we have

multiple properties available, we call the set of

properties ħ = {ħ1, ħ2 ….. ħk} This sort of mapping

reduces the size of the sets used by selector to

better predict a isomorphism and return a non

empty set. Some common properties are:

- Nodes having same name in the call graphs.

These can available as either debug

information or import/export information.

- Nodes having similar/common string

references.

- Nodes having same small prime product

(see section overcoming challenges)

- Nodes having same sub function calls in

control flow graphs

4.1.3 Graph Isomorphism Algorithm:

- Given a Selector, the algorithm

constructs an approximate initial graph

isomorphism p1 for the graphs Go and

GN. The algorithm for this is given as:

For ħi ∈ ħ where i = 1 ….k do

Obtain (G ’, G ’) from ħ

For x ∈ G ’ do

 p1(x) = Selector (x, G ’)
end

end

- Improve the initial isomorphism p1 to pi

iteratively. If we have a isomorphism

pn−1, we can construct pn as follows:

S = {x ∈ G | pn−1(x)!= <Empty>}

For x ∈ S do
 P = Parent(x)

 K = Parent (pn−1(x));

 For y ∈ P do
If Selector (y, K) !=

<Empty Set> ; then

 pn(y) = Selector (y, K)

 end

 end

end

4.1.4 Overcoming Instruction Reordering

 Instruction reordering challenge that occurs

due to pipelining / compiler optimization can be

overcome by using small primes product. The

problem is essentially that two blocks are

isomorphic but they differ in the order of

Review Paper: Effective Binary Change Quantification for Defect Estimation Usman Shami and Junaid Ahmed

4

instructions. To detect this, we assign each

instruction in the instruction set a unique small

prime number.

We compute the product of the prime numbers

that correspond to each instruction in a block 1

and compare it to the product of primes

corresponding to instructions in block 2. If the

product is same, we know that the blocks are

same (isomorphic).

4.2 Complexity

The complexity of the algorithm is O(nm)

where n is the number of nodes in the

graph of executable Old and m is the

number of nodes in the graph of executable

new.

Since, we are in the worst possible scenario,

comparing each node (which is itself a

graph) of Old to all the nodes of New to

come to a conclusion that a corresponding

mapping exists, there can be a maximum

number of n*m comparisons.

Essentially, this is quadratic time ~O(n*n)

with a slight caveat of implementation

specific optimizations.

5. Alternative Approaches

5.1 Entity Name Matching

Description: The code matching techniques

matches the code elements like functions, file

names and data members. These are referred

to as immutable entities and the matching can

happen at a certain tuple level where the (class

name, function name) might be matched. [12]

Complexity: Such algorithms’ complexities can

be linear to the size of the code entities if the

matching is instruction order specific; otherwise

the implementations are usually of the order O

(nm) (where n and m are the size of the entities

that are being matched). This depends on how

the entities are formulated as well and what is

the flexibility allowed with respect to a change

Advantages: Simple to implement and use.

Differences of patterns (than just plain

differences) can be obtained by combining this

technique with effective data mining

techniques.

Drawbacks: The code changes cannot

effectively translate to the amount of logical

changes going into the program flow.

Thousands of lines of codes can be added and

deleted without really affecting program flow;

hence, it is not a very useful metric in

quantifying the nature of the logical change in a

binary. Does not abstract the syntax at any

level, thus indirect changes are always present

in the results

5.2 Syntax Tree Matching

Description: The algorithm [6], which is based

on a dynamic programming scheme, is also

used in pointing out differences between two

programs. This approach involves the creation

of syntax trees of the various tokens. The

algorithm aims at matching the trees and

pointing out the differences. [7]

Complexity: The time complexity of the

algorithms belonging to this genre are O

(Tree1Nodes, Tree2Nodes), where Tree1Nodes

and Tree2Nodes are the numbers of nodes of

the trees, respectively. The space requirement

is the space requirement is O (Tree1Nodes +

Review Paper: Effective Binary Change Quantification for Defect Estimation Usman Shami and Junaid Ahmed

5

Tree2Nodes). This is the implementation of

Yang in [6].

Advantages: It can be used to determine

Dynamic Software Updating metrics [7] in which

a tabulation and summarization of simple

changes to successive versions of programs is

needed which is partially achieved by matching

the abstract syntax tree representation of the

programs. Good heuristics can reduce the

nodes that are being matched, making the

algorithm efficient. Syntax abstraction helps in

removing indirect noise

Disadvantages: Grammar specific and hence

not predicting the accuracy of binary code

change. Too sensitive to small changes as

nested control structures must map to every

level. Implementations are also more focused

on the syntax rather than the semantics.

5.3 BMAT

BMAT [BMAT] is considered one of the

optimum and fairly effective method of

detecting changes in binaries without the

knowledge of the source code changes. It is

extensively used in profile based propagation,

which ahs applications in binary

instrumentation and code coverage.

BMAT uses a three tiered approach towards

acknowledging binary changes. The figure 1

shows an overview of the whole matching

process.

Figure 1. Overview of the BMAT matching Process [1]

The procedures are matched first by basic and

extended compiler generated names and then

the nature of differences are calculated by the

difference in their hash values, which are

computed based on the building blocks of the

procedure: branches and data values.

In Procedure Mapping, BMAT maps Procedure

names based on their basic and extended

(based on compiler settings) names. For

matching the procedures with different names,

a fuzzy match is performed based on block trial

matching. A certain heuristic is maintained

through which the decision is taken whether a

block was a successful match or not. This trial-

matching is a simplified, one-pass version of the

hashing-based basic block matching algorithm

performed later within each pair of matched

procedures.

In data block matching, we also use a hashing-

based algorithm to match data blocks in the

Review Paper: Effective Binary Change Quantification for Defect Estimation Usman Shami and Junaid Ahmed

6

two binaries. Finally, in the basic block matching

we match the code contents using multiple

hash passes with different level of fuzziness.

Complexity: O (n2) as each functional unit (n) is

compared against the other

Advantages: Binary Change is being isolated

which is indifferent to source code changes.

Fuzziness level can be defined according to the

nature of differences.

Disadvantages: Cost of running is high. Small

offsets caused by variables, stack shifts and

register renaming causes the hash comparisons

to fail if the hash function is not chosen

appropriately.

6. Key Open problems/challenges

6.1 Logical Editing

The matching problem can be easily solved, if

we can capture the logical delta between

binaries rather than the state delta.

Unfortunately, the existing tools only allow us

to capture the state change rather than the

logical change. [8]

6.2 Hybrid Matching

A combination of all existing matching

techniques can complement each of the

matching techniques as none is perfect. A

technique can be used that can run all matching

queries based on disparate algorithms and then

merge the common results.

6.3 Dynamic Information Usage

Dynamic Invariant can help in detection of code

paths that potentially impact the program if

altered. The example of dynamic invariants may

be useful in identifying the matches of variable

values at the entry and the exit of the function.

This can effectively help in profiling and

detecting logical changes to program logic

rather than just plain code. [9]

7. Conclusion

We can conclude by presenting one of the

recent implementations of Code Churn

quantification.

Binary Code change quantification can be used

come up with metrics that can be used in

Defect Prediction in a software life cycle.

Metrics such as Block Coverage, Arc Coverage,

Frequency of Churn, Number of Developers etc.

can be used to get the multiple regression

equation of the form:

Y = c + a1PC1+a2PC2+…..+anPCn,

where a1, a2 …., an are regression coefficients

and PC1,PC2 …., PCn are the principal

components and Y is the estimated value of

post release failures. [10]

This is one of the recent examples of the

implementations of quantifying binary churn.

8. References

[1] Z. Wang, K. Pierce, and S. McFarling. BMAT - a

binary matching tool for stale profile propagation. J.
Instruction-Level Parallelism, 2, 2000

[2] G. Rothermel and M. J. Harrold. A safe, efficient
regression test selection technique. ACM TOSEM,
6(2):173–210, 1997.

[3] Halvar Flake. Structural comparison of executable
objects. In DIMVA, pages 161–173, 2004.

[4] Graph-based comparison of Executable Objects
Thomas Dullien, Ruhr-Universitaet Bochum
Rolf Rolles, University of Technology in Florida
{thomas.dullien, rolf.rolles}@sabre-security.com

Review Paper: Effective Binary Change Quantification for Defect Estimation Usman Shami and Junaid Ahmed

7

[5] DataRescue. IDA Pro disassembler
http://www.datarescue.com/idabase.

[6] W. Yang. Identifying syntactic differences

between two programs. Software - Practice and

Experience, 21(7):739–755, 1991.

[7] (I. Neamtiu, J. S. Foster, and M. Hicks.

Understanding source code evolution using abstract

syntax tree matching. In MSR’05, pages 2–6.)

[8] [E. Lippe and N. van Oosterom. Operation-based

merging. In SDE’92, pages 78–87, 1992.]

[9] M. D. Ernst. Dynamically Discovering Likely

Program Invariants. Ph.D. Disseratation, University

of Washington, Seattle, Washington, Aug. 2000

[10] Nachiappan Nagappan, Thomas Ball, Brendan

Murphy, Using Historical In-Process and Product

Metrics for Early Estimation of Software Failures ,

Microsoft Research, Redmond, WA

[11] Alfred V. Aho, J. D. U., Ravi Sethi: Compilers:

Principles, Techniques, and Tools, Addison Wesley

[12] A. T. T. Ying, G. C. Murphy, R. Ng, and

M. Chu-Carroll. Predicting source code changes by
mining change history. IEEE Trans. Softw. Eng.,
30(9):574–586, 2004.

