
Rectangular Partitioning
Joe Forsmann and Rock Hymas

Introduction/Abstract
We will look at a problem that I (Rock) had to solve in the course of my work.

Given a set of non-overlapping rectangles each having top, left, bottom, and right coordinates,

divide the x-y plane over which these rectangles exist into the minimum number of rows plus

columns, such that each resulting cell intersects at most one rectangle.

We will refer to this problem as Rectangular Partitioning and show that it is NP-complete, but that

approximation algorithms exist. We also explore the non-optimal solution used in my work, as well as

discussing open problems and future challenges.

Motivation
The motivation for Rectangular Partitioning comes from my work. The application I help create has

forms that can be designed by third parties, and it also has a layout engine that makes it easy to change

the layout of a form based on the size of the form and its contents. The layout engine takes as it’s input

a table of cells and their contents, along with attributes specifying how a given cell, row, or column

should behave (i.e. expand when the form expands, alignment of controls, etc.). The table of cells may

have controls that overlap multiple cells, but each cell may contain at most one control. Third party form

designers don’t have direct access to this layout engine, and so we created a conversion from the form

they designed to the layout engine input by subdividing the form space into rows and columns based on

the placement of individual controls, which are all rectangular. Minimizing the number of rows plus

columns is important to the running time of the layout engine, so that is our goal.

Additionally, in researching Rectangular Partitioning, we have found that it is related to problems in

parallel computation where a computational task is partitioned into subtasks that can be assigned to

parallel processors in such a way that minimized communication among the processors in reassembling

the solution. Understanding Rectangular Partitioning further may provide insight into the problem of

subdividing a computational task for parallel processors.

Formal Problem Definition
Given a set of non-overlapping rectangles 𝑅1 ,𝑅2 ,…𝑅𝑛 each having top coordinates 𝑡(𝑅𝑖), left

coordinates 𝑙(𝑅𝑖), bottom coordinates 𝑏(𝑅𝑖), and right coordinates denoted as 𝑟(𝑅𝑖), partition the 𝑥-𝑦

plane over which these rectangles exist into the minimum number of rows plus columns, such that each

resulting cell intersects at most one rectangle. Formally, a partitioning is determined by a set 𝐻 of

horizontal dividers (rows) ℎ0 = 0 ≤ ℎ1 ≤ ⋯ ≤ ℎ𝑝 = maxi 𝑟(𝑅𝑖) and a set 𝑉 of vertical dividers

𝑣0 = 0 ≤ 𝑣1 ≤ ⋯ ≤ 𝑣𝑞 = maxj 𝑏(𝑅𝑗). The partitioning creates 𝑝 ∙ 𝑞 cells 𝑐𝑖 ,𝑗 , 0 ≤ 𝑖 < 𝑝 and 0 ≤ 𝑗 < 𝑞,

where the cell 𝑐𝑖 ,𝑗 is also a rectangle with 𝑡 𝑐𝑖,𝑗 = 𝑣𝑗 , 𝑏 𝑐𝑖,𝑗 = 𝑣𝑗+1 , 𝑙 𝑐𝑖 ,𝑗 = ℎ𝑖 , 𝑟 𝑐𝑖,𝑗 = ℎ𝑖+1. We

say that a cell 𝑐𝑖 ,𝑗 intersects a rectangle 𝑅𝑘 if max 𝑡 𝑐𝑖 ,𝑗 , 𝑡 𝑅𝑘 > min 𝑏 𝑐𝑖,𝑗 , 𝑏 𝑅𝑘 and

max 𝑙 𝑐𝑖,𝑗 , 𝑙 𝑅𝑘 > min 𝑟 𝑐𝑖,𝑗 , 𝑟 𝑅𝑘 . Then we try to find a partitioning 𝑃 = 𝐻,𝑉 such that

𝑝 + 𝑞 is as small as possible, subject to the constraint that ∀𝑐𝑖,𝑗 , 𝑐𝑖,𝑗 intersects at most one 𝑅𝑘 .

Our approach
In my application, the existing algorithm for solving this problem is non-optimal. We give the algorithm

here for completeness. In this description, increases along the 𝑦 axis move downward.

Sort the rectangles first by increasing 𝑡(𝑅𝑖), then by increasing 𝑙(𝑅𝑖)

Create a partition with one row and one column

ℎ0 = 0,ℎ1 = max𝑖 𝑟 𝑅𝑖

𝑣0 = 0, 𝑣1 = max𝑖 𝑏(𝑅𝑖)

For each rectangle 𝑅𝑖

For each cell 𝑐𝑖 ,𝑗 which intersects both 𝑅𝑖 and some other 𝑅𝑗

if 𝑅𝑖 and 𝑅𝑗 can be separated by creating a new row

Create a new row, with new ℎ𝑖 = max 𝑡 𝑅𝑖 , 𝑡(𝑅𝑗)

Insert ℎ𝑖 into the correct place in 𝐻

else

Create a new column, with new 𝑣𝑖 = max 𝑙 𝑅𝑖 , 𝑙(𝑅𝑗)

Insert 𝑣𝑖 into the correct place in 𝑉

endif

end for

end for

The following sequence shows the progression of dividing rows and columns that the above algorithm

goes through. The rectangles are numbered according to their order in this sorting.

1 2

3

4 5

1 2

3

4 5

1 2

3

4 5

1 2

3

4 5

The following is an example where the algorithm above does not find the optimal solution. The

algorithm will divide it into 6 rows, but an optimal solution requires only 3 rows and 2 columns

Rectangular Partitioning is NP-Complete
Rectangular Partitioning has an equivalent decision problem that is defined as follows:

Given the values 𝑝, 𝑞, is there a partitioning (𝐻,𝑉) of the 𝑥-𝑦 plane such that 𝐻 = 𝑝 and

 𝑉 = 𝑞 and such that each cell 𝑐𝑖,𝑗 intersects at most one of the rectangles 𝑅𝑖 .

We show this by reducing the Balanced Bipartite Cover (BBC) problem to Rectangular Partitioning. BBC is

defined as follows:

Given a bipartite graph 𝐺 = (𝑉1,𝑉2 ,𝐸) with 𝑉1 = 𝑉2 , 𝐸 ⊆ 𝑉1 × 𝑉2 and a positive integer 𝑘,

are there subsets 𝑈1 ⊆ 𝑉1 and 𝑈2 ⊆ 𝑉2 such that 𝑈1 = 𝑈2 = 𝑘 each edge (𝑢, 𝑣) ∈ 𝐸 has

either 𝑢 ∈ 𝑈1 or 𝑣 ∈ 𝑈2.

BBC is shown to be NP-Complete in [2]. The following proof is analogous to the proof in [same

reference] that BBC can be reduced to the Generalized Block Distribution.

First we create an instance of Rectangular Partitioning from a given instance of BBC in the following way.

Let 𝑛 = 𝑉1 = 𝑉2 in the instance of BBC. Let 𝑅𝑖 ,𝑗 be defined such that 𝑙 𝑅𝑖 ,𝑗 = 2𝑖 + 1, 𝑡 𝑅𝑖,𝑗 = 2𝑗 +

1, 𝑟 𝑅𝑖,𝑗 = 2𝑖 + 2, 𝑏 𝑅𝑖 ,𝑗 = 2𝑗 + 2. Then the instance of RP has 𝑞 = 𝑝 = 𝑛 + 𝑘 + 2 and includes the

following rectangles:

1. 𝑅0,0

2. 𝑅0,4𝑘+1 and 𝑅0,4𝑘+2 for 0 ≤ 𝑘 < 𝑛/2

3. 𝑅1,4𝑘 and 𝑅1,4𝑘+3 for 0 ≤ 𝑘 < 𝑛/2

4. 𝑅4𝑘+1,0 and 𝑅4𝑘+2,0 for 0 ≤ 𝑘 < 𝑛/2

5. 𝑅4𝑘 ,1 and 𝑅4𝑘+3,1 for 0 ≤ 𝑘 < 𝑛/2

6. 𝑅2𝑖,2𝑗 and 𝑅2𝑖+1,2𝑗+1 for all (𝑖, 𝑗) ∈ 𝐸

If we find a solution to this RP then the rectangles from the first five rules force is to create at least

𝑛 + 2 rows and 𝑛 + 2 columns no matter what the rectangles in rule 6 do. This is demonstrated by the

hollow rectangles in the first two rows and first two columns in Figure 1. Forcing columns and rows, with

the minimum set of rows and columns indicated by dotted lines. This leaves us with 𝑘 rows and 𝑘

columns to add in hopes of satisfying the requirements of the rectangles in rule 6. For each edge in 𝐺,

rule 6 constructs two rectangles (green) not divided by the the rows/columns forced into existence by

rules 1 through 5. Each of these sets of rectangles can and must be divided either by adding a new row

or a new column, or both, if we are to meet the requirement that each cell intersect at most one

rectangle. Splitting them with a new row corresponds to choosing a vertex from 𝑉1in BBC and splitting

them with a new column corresponds to a choosing a vertex from 𝑉2. It is clear from the construction of

this RP instance that there exists a solution to it if and only if the corresponding BBC problem has a

solution. Thus, RP is NP-hard. A certificate of a solution to the decision version of RP that is verifiable in

polynomial time is simple a partitioning 𝐻 of the 𝑥-𝑦 plane with 𝑝 rows and 𝑞 columns that satisfies the

requirement of RP. Thus, RP is in NP and is NP-Complete.

□ □ □ □ □

□ □ □ □

□ ■
 □ ■

 □ ■
□ ■

□ ■
 □ ■

Figure 1. Forcing columns and rows

Paper Discussion
Problem Overview
In their paper [1] Muthukrishnan and Suel discuss partitioning an array of cells containing integers into
rectangular ‘tiles’. Consider, for example, that integers in each cell represent amount of work, and the
job is to partition the work among processors. The goal of the algorithm is to balance the work between
the processors. The paper also describes applications of this algorithm in the database and image
processing paradigm.

Metrics for Optimal Partitioning
Two metrics are used to quantify the optimality of the algorithm – MAX-SUM and SUM-VAR. The MAX-
SUM metric is simply the maximum of all tile weights, where the tile weight is the sum of all cells within
that tile. The SUM-VAR metric is the sum of all variance, where variance is defined as the square of the
difference between the tile weight and the average of all tile weights. The goal of the algorithm is to
find a partitioning that minimizes these metrics.

NP-Completeness
Via references, the paper stated that variation of this problem was proven to be NP-Complete. The
MAX-SUM in three dimensions was found to be NP Complete using a reduction to Monotonic 3-SAT.
Further, the two dimensional problem was shown to be NP Complete using a reduction to the Balanced
Complete bipartite subgraph. For optimizing the slightly different problem of minimizing the number of
tiles, a reduction to Set Cover is referenced that provides a 𝑂(log 𝑛) approximation of the number of
dividers.

Other Heuristic Algorithms

Having shown that this problem and many variants are NP-Complete, the paper turns toward finding
algorithms that approximate solutions. Many other authors have shown that there exist heuristic
algorithms that provide good approximations to the MAX-SUM problem. The best of which provides a
solution with an approximation factor of about 120. Most of these ‘other’ algorithms are based on the
following principle:
Do alternate scans of each axis, and for each scan find the best possible cuts – taking into account all the
cuts that have been made before. The algorithm terminates when there are no more cuts made over a
full scan.

The Algorithm
The formal algorithm can be found in section 5.2 of the paper. The core algorithm described in this
paper is inspired by a greedy algorithm used for solving Set Cover. Essentially, the author makes
optimizations on another referenced solution to provide a better running time and closer approximation
to an optimal solution than any other known solution.

Mapping Rectangular Partitioning to Array Partitioning
The concept of returning a list of ‘x’ and ‘y’ values that define the partitioning boundaries are the same
between the problem discussed in the paper, and the project problem of partitioning controls into cells.
Given this, we considered ways in which to map the rectangular partitioning into the array partitioning.
In the Rectangular Partitioning problem, if we place a vertical line on the right side of each control, and
we place a horizontal line on the top of each control, then this creates an 𝑛 ×𝑚 array with at most one
control per cell. If a cell in this array contains a control, then set the value of that cell to be a large value.
Finally, set the value of all other cells that do not contain a control to 0. Then, we run the version of the
algorithm described in this paper with the metric to minimize the number of partitions to obtain the
solution to the Rectangular Partitioning problem.

To ensure that each cell in the end will contain at most one control, we set the value of a control-
containing cell to be a large value. Therefore, the extreme cost of having two controls in one cell, and
one cell in another would force all cells to have a single control.

Open Problems and Challenges
There are many potential variations on this problem, even within the framework of our motivation

section. For example, the layout engine might have 𝑂 𝑝𝑞 time complexity, and so the optimization

would change to optimizing for minimum 𝑝𝑞, rather than minimum 𝑝 + 𝑞. One could easily imagine

removing the initial constraint that all rectangles are non-overlapping. We could then rephrase the

question in terms of minimizing the number of cells that intersect multiple rectangles. If the layout

engine could handle multiple controls in a given cell, but doing so was expensive, we could modify what

we’re optimizing for by making it 𝑝 + 𝑞 + 𝑐𝐼, where 𝑐 is a constant penalty factor and 𝐼 is the number of

cells with multiple intersecting controls.

Bibliography
[1] S. Muthukrishnan and Torsten Suel. Approximation Algorithms for Array Partitioning Problems.

citeseer.ist.psu.edu/582593.html

[2] M. Grigni, and F. Manne, "On the Complexity of the Generalized Block Distribution," Proc. 3rd

Int. Workshop on Parallel Algorithms for Irregularly Structured Problems (IRREGULAR'96),1996, pp. 319--

326.

[3] S. Muthukrishnan, Viswanath Poosala, and Torsten Suel. On rectangular partitionings in two

dimensions: Algorithms, complexity, and applications. 7th International Conference on Database Theory,

January, 1999.

[4] S. Khanna, S. Muthukrishnan and S. Skiena. Efficient array partitioning. Proc. 24th ICALP,

616626, 1997. http://citeseer.ist.psu.edu/article/khanna97efficient.html

