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Introduction/Abstract 
We will look at a problem that I (Rock) had to solve in the course of my work.  

Given a set of non-overlapping rectangles each having top, left, bottom, and right coordinates, 

divide the x-y plane over which these rectangles exist into the minimum number of rows plus 

columns, such that each resulting cell intersects at most one rectangle. 

We will refer to this problem as Rectangular Partitioning and show that it is NP-complete, but that 

approximation algorithms exist. We also explore the non-optimal solution used in my work, as well as 

discussing open problems and future challenges. 

Motivation 
The motivation for Rectangular Partitioning comes from my work. The application I help create has 

forms that can be designed by third parties, and it also has a layout engine that makes it easy to change 

the layout of a form based on the size of the form and its contents. The layout engine takes as it’s input 

a table of cells and their contents, along with attributes specifying how a given cell, row, or column 

should behave (i.e. expand when the form expands, alignment of controls, etc.). The table of cells may 

have controls that overlap multiple cells, but each cell may contain at most one control. Third party form 

designers don’t have direct access to this layout engine, and so we created a conversion from the form 

they designed to the layout engine input by subdividing the form space into rows and columns based on 

the placement of individual controls, which are all rectangular. Minimizing the number of rows plus 

columns is important to the running time of the layout engine, so that is our goal. 

Additionally, in researching Rectangular Partitioning, we have found that it is related to problems in 

parallel computation where a computational task is partitioned into subtasks that can be assigned to 

parallel processors in such a way that minimized communication among the processors in reassembling 

the solution. Understanding Rectangular Partitioning further may provide insight into the problem of 

subdividing a computational task for parallel processors. 

Formal Problem Definition 
Given a set of non-overlapping rectangles 𝑅1 ,𝑅2 ,…𝑅𝑛  each having top coordinates 𝑡(𝑅𝑖), left 

coordinates 𝑙(𝑅𝑖), bottom coordinates 𝑏(𝑅𝑖), and right coordinates denoted as 𝑟(𝑅𝑖), partition the 𝑥-𝑦 

plane over which these rectangles exist into the minimum number of rows plus columns, such that each 

resulting cell intersects at most one rectangle. Formally, a partitioning is determined by a set 𝐻 of 

horizontal dividers (rows) ℎ0 = 0 ≤ ℎ1 ≤ ⋯ ≤ ℎ𝑝 = maxi 𝑟(𝑅𝑖) and a set 𝑉 of vertical dividers 

𝑣0 = 0 ≤ 𝑣1 ≤ ⋯ ≤ 𝑣𝑞 = maxj 𝑏(𝑅𝑗 ). The partitioning creates 𝑝 ∙ 𝑞 cells 𝑐𝑖 ,𝑗 , 0 ≤ 𝑖 < 𝑝 and 0 ≤ 𝑗 < 𝑞, 

where the cell 𝑐𝑖 ,𝑗  is also a rectangle with 𝑡 𝑐𝑖,𝑗  = 𝑣𝑗 , 𝑏 𝑐𝑖,𝑗  = 𝑣𝑗+1 , 𝑙 𝑐𝑖 ,𝑗  = ℎ𝑖 , 𝑟 𝑐𝑖,𝑗  = ℎ𝑖+1. We 



say that a cell 𝑐𝑖 ,𝑗  intersects a rectangle 𝑅𝑘  if max  𝑡 𝑐𝑖 ,𝑗  , 𝑡 𝑅𝑘  > min  𝑏 𝑐𝑖,𝑗  , 𝑏 𝑅𝑘   and 

max  𝑙 𝑐𝑖,𝑗  , 𝑙 𝑅𝑘  > min  𝑟 𝑐𝑖,𝑗  , 𝑟 𝑅𝑘  . Then we try to find a partitioning 𝑃 =  𝐻,𝑉  such that 

𝑝 + 𝑞 is as small as possible, subject to the constraint that ∀𝑐𝑖,𝑗 , 𝑐𝑖,𝑗  intersects at most one 𝑅𝑘 .  

Our approach 
In my application, the existing algorithm for solving this problem is non-optimal. We give the algorithm 

here for completeness. In this description, increases along the 𝑦 axis move downward.  

Sort the rectangles first by increasing 𝑡(𝑅𝑖), then by increasing 𝑙(𝑅𝑖)  

Create a partition with one row and one column 

ℎ0 = 0,ℎ1 = max𝑖 𝑟 𝑅𝑖   

𝑣0 = 0, 𝑣1 = max𝑖 𝑏(𝑅𝑖)  

For each rectangle 𝑅𝑖 

For each cell 𝑐𝑖 ,𝑗 which intersects both 𝑅𝑖 and some other 𝑅𝑗 

if 𝑅𝑖 and 𝑅𝑗 can be separated by creating a new row 

Create a new row, with new ℎ𝑖 = max 𝑡 𝑅𝑖 , 𝑡(𝑅𝑗 )  

Insert ℎ𝑖 into the correct place in 𝐻 

else 

Create a new column, with new 𝑣𝑖 = max 𝑙 𝑅𝑖 , 𝑙(𝑅𝑗 )  

Insert 𝑣𝑖 into the correct place in 𝑉 

endif 

end for 

end for 

The following sequence shows the progression of dividing rows and columns that the above algorithm 

goes through. The rectangles are numbered according to their order in this sorting. 
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The following is an example where the algorithm above does not find the optimal solution. The 

algorithm will divide it into 6 rows, but an optimal solution requires only 3 rows and 2 columns  

 

Rectangular Partitioning is NP-Complete 
Rectangular Partitioning has an equivalent decision problem that is defined as follows: 

Given the values 𝑝, 𝑞, is there a partitioning (𝐻,𝑉) of the 𝑥-𝑦 plane such that  𝐻 = 𝑝 and 

 𝑉 = 𝑞 and such that each cell 𝑐𝑖,𝑗  intersects at most one of the rectangles 𝑅𝑖 . 

We show this by reducing the Balanced Bipartite Cover (BBC) problem to Rectangular Partitioning. BBC is 

defined as follows: 

Given a bipartite graph 𝐺 = (𝑉1,𝑉2 ,𝐸) with  𝑉1 =  𝑉2  , 𝐸 ⊆ 𝑉1 × 𝑉2 and a positive integer 𝑘, 

are there subsets 𝑈1 ⊆ 𝑉1 and 𝑈2 ⊆ 𝑉2 such that  𝑈1 =  𝑈2 = 𝑘 each edge (𝑢, 𝑣) ∈ 𝐸 has 

either 𝑢 ∈ 𝑈1 or 𝑣 ∈ 𝑈2.  

BBC is shown to be NP-Complete in [2]. The following proof is analogous to the proof in [same 

reference] that BBC can be reduced to the Generalized Block Distribution.  

First we create an instance of Rectangular Partitioning from a given instance of BBC in the following way.  

Let 𝑛 =  𝑉1 =  𝑉2  in the instance of BBC. Let 𝑅𝑖 ,𝑗  be defined such that 𝑙 𝑅𝑖 ,𝑗  = 2𝑖 + 1, 𝑡 𝑅𝑖,𝑗  = 2𝑗 +

1, 𝑟 𝑅𝑖,𝑗  = 2𝑖 + 2, 𝑏 𝑅𝑖 ,𝑗  = 2𝑗 + 2. Then the instance of RP has 𝑞 = 𝑝 = 𝑛 + 𝑘 + 2 and includes the 

following rectangles: 

1. 𝑅0,0 

2. 𝑅0,4𝑘+1 and 𝑅0,4𝑘+2 for 0 ≤ 𝑘 <  𝑛/2  

3. 𝑅1,4𝑘  and 𝑅1,4𝑘+3 for 0 ≤ 𝑘 <  𝑛/2  

4. 𝑅4𝑘+1,0 and 𝑅4𝑘+2,0 for 0 ≤ 𝑘 <  𝑛/2  

5. 𝑅4𝑘 ,1 and 𝑅4𝑘+3,1 for 0 ≤ 𝑘 <  𝑛/2  

6. 𝑅2𝑖,2𝑗  and 𝑅2𝑖+1,2𝑗+1 for all (𝑖, 𝑗) ∈ 𝐸 

If we find a solution to this RP then the rectangles from the first five rules force is to create at least 

𝑛 + 2 rows and 𝑛 + 2 columns no matter what the rectangles in rule 6 do. This is demonstrated by the 

hollow rectangles in the first two rows and first two columns in Figure 1. Forcing columns and rows, with 

the minimum set of rows and columns indicated by dotted lines. This leaves us with 𝑘 rows and 𝑘 

 



columns to add in hopes of satisfying the requirements of the rectangles in rule 6. For each edge in 𝐺, 

rule 6 constructs two rectangles (green) not divided by the the rows/columns forced into existence by 

rules 1 through 5. Each of these sets of rectangles can and must be divided either by adding a new row 

or a new column, or both, if we are to meet the requirement that each cell intersect at most one 

rectangle. Splitting them with a new row corresponds to choosing a vertex from 𝑉1in BBC and splitting 

them with a new column corresponds to a choosing a vertex from 𝑉2. It is clear from the construction of 

this RP instance that there exists a solution to it if and only if the corresponding BBC problem has a 

solution. Thus, RP is NP-hard. A certificate of a solution to the decision version of RP that is verifiable in 

polynomial time is simple a partitioning 𝐻 of the 𝑥-𝑦 plane with 𝑝 rows and 𝑞 columns that satisfies the 

requirement of RP. Thus, RP is in NP and is NP-Complete.  
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Figure 1. Forcing columns and rows 

 

Paper Discussion 
Problem Overview 
In their paper [1] Muthukrishnan and Suel discuss partitioning an array of cells containing integers into 
rectangular ‘tiles’.  Consider, for example, that integers in each cell represent amount of work, and the 
job is to partition the work among processors.  The goal of the algorithm is to balance the work between 
the processors.  The paper also describes applications of this algorithm in the database and image 
processing paradigm.   
 
Metrics for Optimal Partitioning 
Two metrics are used to quantify the optimality of the algorithm – MAX-SUM and SUM-VAR.  The MAX-
SUM metric is simply the maximum of all tile weights, where the tile weight is the sum of all cells within 
that tile.   The SUM-VAR metric is the sum of all variance, where variance is defined as the square of the 
difference between the tile weight and the average of all tile weights.  The goal of the algorithm is to 
find a partitioning that minimizes these metrics. 
 
NP-Completeness 
Via references, the paper stated that variation of this problem was proven to be NP-Complete.  The 
MAX-SUM in three dimensions was found to be NP Complete using a reduction to Monotonic 3-SAT.  
Further, the two dimensional problem was shown to be NP Complete using a reduction to the Balanced 
Complete bipartite subgraph. For optimizing the slightly different problem of minimizing the number of 
tiles, a reduction to Set Cover is referenced that provides a 𝑂(log 𝑛 ) approximation of the number of 
dividers. 
 
Other Heuristic Algorithms 



Having shown that this problem and many variants are NP-Complete, the paper turns toward finding 
algorithms that approximate solutions.  Many other authors have shown that there exist heuristic 
algorithms that provide good approximations to the MAX-SUM problem.  The best of which provides a 
solution with an approximation factor of about 120.  Most of these ‘other’ algorithms are based on the 
following principle: 
Do alternate scans of each axis, and for each scan find the best possible cuts – taking into account all the 
cuts that have been made before.  The algorithm terminates when there are no more cuts made over a 
full scan. 
 
The Algorithm 
The formal algorithm can be found in section 5.2 of the paper.  The core algorithm described in this 
paper is inspired by a greedy algorithm used for solving Set Cover.  Essentially, the author makes 
optimizations on another referenced solution to provide a better running time and closer approximation 
to an optimal solution than any other known solution. 
 
Mapping Rectangular Partitioning to Array Partitioning 
The concept of returning a list of ‘x’ and ‘y’ values that define the partitioning boundaries are the same 
between the problem discussed in the paper, and the project problem of partitioning controls into cells.  
Given this, we considered ways in which to map the rectangular partitioning into the array partitioning.  
In the Rectangular Partitioning problem, if we place a vertical line on the right side of each control, and 
we place a horizontal line on the top of each control, then this creates an 𝑛 ×𝑚 array with at most one 
control per cell.  If a cell in this array contains a control, then set the value of that cell to be a large value.  
Finally, set the value of all other cells that do not contain a control to 0.  Then, we run the version of the 
algorithm described in this paper with the metric to minimize the number of partitions to obtain the 
solution to the Rectangular Partitioning problem. 
 
To ensure that each cell in the end will contain at most one control, we set the value of a control-
containing cell to be a large value.  Therefore, the extreme cost of having two controls in one cell, and 
one cell in another would force all cells to have a single control. 

Open Problems and Challenges 
There are many potential variations on this problem, even within the framework of our motivation 

section. For example, the layout engine might have 𝑂 𝑝𝑞  time complexity, and so the optimization 

would change to optimizing for minimum 𝑝𝑞, rather than minimum 𝑝 + 𝑞. One could easily imagine 

removing the initial constraint that all rectangles are non-overlapping. We could then rephrase the 

question in terms of minimizing the number of cells that intersect multiple rectangles. If the layout 

engine could handle multiple controls in a given cell, but doing so was expensive, we could modify what 

we’re optimizing for by making it 𝑝 + 𝑞 + 𝑐𝐼, where 𝑐 is a constant penalty factor and 𝐼 is the number of 

cells with multiple intersecting controls.  
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