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1 Problem and applications 
Almost all programming languages have a notion of a heap, or free-store, from which the 
programmer can request memory.  Historically, the heap was managed explicitly by the programming 
by using allocate and release function calls in a library (such as malloc/free in C, and new/delete in 
C++).  Explicit memory management has been a significant source of software bugs, and programmer 
pain (for example, using memory after it has been freed, freeing it twice, or forgetting to free it at all). 
 
Starting around 1960, algorithms began to be studied for automatic memory management [McCarthy, 
1960] [Collins, 1960].  With automatic memory management, a programmer can request space from 
the heap (eg. by instantiating a new object with a statement like “new MyObject()” in C# and Java), 
and the run-time system does the job of allocating the necessary memory and releasing it to be re-
used when it’s no longer needed.  Automatic memory management is easier to use and less error-
prone than explicit memory management, but is also usually considered to be less efficient and less 
flexible.   
 
Automatic memory management is usually implemented by the runtime system using a family of 
algorithms called “garbage collection”.  Lisp was the first widespread programming language to 
adopt garbage collection in the early 60s.  For various reasons (eg. complexity of implementation, 
efficiency, and stubbornness of programmers), garbage collection did not become popular in 
mainstream industrial programming until the 90s with the advent in popularity of the Java 
programming language.  Today, virtually every modern high-level programming language has 
garbage collection as a core feature of it’s design.  Such languages include Java, C#, ML, Visual 
Basic, Python, Ruby, Scheme, Haskell (basically everything in widespread use except for C/C++).  
Garbage collection is generally considered to be one of the biggest improvements in programmer 
productivity since the advent of the high-level programming language. 
 
The basic problem of garbage collection is to identify the memory which is no-longer needed by the 
application, and to make it available for other allocations.  Memory is determined to be no longer 
needed by the application, if there is no longer any way for the program to refer to the region of 
memory in question.  The main challenge in designing a GC algorithm is to find one which is 
“efficient” for typical uses, where efficiency is measured according to many metrics (see part 3). 

2 Formalization of the problem 
A heap can be thought of as a set of objects, and a distinguished object known as the “root”.  Each 
object has an address, size, and set of references (which are addresses of other objects).  Addresses 
can be thought of as non-negative integers in a contiguous address space (from 0 to some maximum 
limit N).  In practice, GC heaps are normally implemented using a subset of a real process address 
space (with potentially non-contiguous “segments”), but we can conceptually map this onto a single 
contiguous logical address space. A heap has the constraint that no two objects may overlap.  That is, 



given any two objects in the heap o1=(a1,s1), and o2=(a2,s2), it is always the case that either a1+s1≤a2 

(i.e. a1 occurs entirely before a2) or a2+s2≤a1 (a2 occurs entirely before a1).   
 
A heap can be modeled as a directed graph with the vertices o=(a,s) representing objects, and the 
edges representing the references between objects.  The problem is then, given a heap at any point, 
modify the heap to improve the desired criteria (mainly availability of space for new allocations) 
while preserving the property that any object which is reachable from the root still exists in the 
modified heap. The most common and simplest modification is to remove some or all of the objects 
which have no path from the root.  Other modifications are also possible, such as relocating 
(changing the address of) objects to coalesce regions of free space, or to preserve some ordering 
property.   
 
For example, at some point in a program execution, the heap 
may look like the graph at right.  If the garbage collector 
were to run at this point, it would determine that o3, o4 and o5 
are no longer reachable from the root, and therefore should 
be considered garbage.  The collector may chose to remove 
some or all of these garbage objects, and possibly relocate 
some of the other reachable objects. 
 

3 Garbage collection algorithms 
Garbage collection algorithms have been an active field of research since 1960.  There are many 
different variations on the basic GC algorithms, all of which attempt to maximize some metrics for 
typical allocation patterns.  The dependence of an algorithm on the allocation pattern of the program 
means that there is usually no precise way to compare GC algorithms without also considering the 
exact context in which it will be used.  In practice, GC algorithms are compared by using both 
imprecise general statements of benefits, and precise measurements of their behavior in specific 
benchmark scenarios.  Some of the most important metrics for comparing GC algorithms include: 

- Minimizing the time spent  reclaiming memory. 
- Minimizing the amount of wasted memory at all times. 
- Minimizing the amount of memory necessary to perform a collection. 
- Minimizing the time and resources necessary for the program to access the memory during 

normal execution (including maximizing CPU cache hit rate and minimizing OS page faults).   
- The above usually implies maximizing the locality of reference, that is the tendency for 

objects which are used together, to be near each other in memory. 
- Minimizing the pause-time experienced by an application during a collection. 
- Minimizing the complexity of the algorithm itself (which in practice often translates into 

performance, adaptability, maintainability, correctness and security benefits). 
- In specialized scenarios (such as small devices) there are often other metrics like maximizing 

battery life, or minimizing the number of writes to flash memory. 
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3.1 Mark-sweep 
The earliest and most basic garbage collection algorithm is mark-sweep garbage collection 
[McCarthy, 1960], and most modern algorithms are a variant on it.  Mark-sweep is a “stop-the-
world” collector, which means that at some point when the program requests memory and none is 
available, the program is stopped and a full garbage collection is performed to free up space. In mark-
sweep, each object has a “mark-bit” which is used during the collection process to track whether the 
object has been visited.  Here is an algorithm for mark-sweep garbage collection implemented on top 
of some underlying explicit memory management routines, in which free regions of the heap are also 
considered objects with mark bits and a known size. 
 
mark_sweep_collect() = 
    mark(root) 
    sweep() 
 
mark(o) = 
  If mark-bit(o)=0 
    mark-bit(o)=1 
    For p in references(o) 
      mark(p) 
    EndFor 
  EndIf 

sweep() 
  o = 0 
  While o < N 
    If mark-bit(o)=1 
      mark-bit(o)=0 
    Else 
      free(o) 
    EndIf 
    o = o + size(o) 
  EndWhile

 
The mark-sweep algorithm operates in time linear in the size of the heap (i.e. O(N)).  This doesn’t 
directly tell us how much overhead it imposes on a program, because it must be invoked whenever an 
allocation fails, and so the overhead depends on parameters such as how big the heap is, and how 
much memory has become unreachable since the last GC.  In practice, the overhead, as well as the 
pause-time, of mark-sweep collectors is high compared to other algorithms.  Mark-sweep does 
however have the advantage of freeing all unused memory, but this free memory easily becomes 
fragmented (limiting the availability of larger contiguous regions).  There is technically a space 
overhead for the mark-bit, but in practice a bit is usually re-purposed from some other run-time data 
structure, since it’s only needed when the program is not running. 
 

3.2 Semi-space 
Semi-space garbage collection [Fenichel, 1969] is a copying algorithm, which means that reachable 
objects are relocated from one address to another during a collection.  Available memory is divided 
into two equal-size regions called “from-space” and “to-space”.  Allocation is simply a matter of 
keeping a pointer into to-space which is incremented by the amount of memory requested for each 
allocation (that is, memory is allocated sequentially out of to-space).  When there is insufficient space 
in to-space to fulfill an allocation, a collection is performed.  A collection consists of swapping the 
roles of the regions, and copying the live objects from from-space to to-space, leaving a block of free 
space (corresponding to the memory used by all unreachable objects) at the end of the to-space.  
Since objects are moved during a collection, the addresses of all references must be updated.  This is 
done by storing a “forwarding-address” for an object when it is copied out of from-space.  Like the 
mark-bit, this forwarding-address can be thought of as an additional field of the object, but is usually 
implemented by temporarily repurposing some space from the object. 



 
initialize() =  
  tospace = 0 
  fromspace = N/2 
  allocPtr = tospace 
 
allocate(n) = 
  If allocPtr + n > tospace + N/2 
    collect() 
  EndIf 
  If allocPtr + n > tospace + N/2 
    fail “insufficient memory” 
  EndIf 
  o = allocPtr 
  allocPtr = allocPtr + n 
  return o 
 
 

collect() = 
  swap( fromspace, tospace ) 
  allocPtr = tospace 
  root = copy(root) 
 
copy(o) = 
  If o has no forwarding address 
    o’ = allocPtr 
    allocPtr = allocPtr + size(o) 
    copy the contents of o to o’ 
    forwarding-address(o) = o’ 
    ForEach reference r from o’ 
      r = copy(r) 
    EndForEach 
  EndIf 
  return forwarding-address(o)

 
The primary benefits of semi-space collection over mark-sweep are that the allocation costs are 
extremely low (no need to maintain and search lists of free memory), and fragmentation is avoided.  
In addition to improving the efficiency and reliability of allocation, avoiding fragmentation also 
improves the locality of reference which means the program will typically run faster (due to paging 
and CPU cache effects).  The primary drawback of semi-space is that it requires twice as much 
memory – at any given time during program execution, half of the available memory cannot be used.  
Semi-space collection executes in time proportional to the amount of reachable memory, and so 
unlike mark-sweep, can be very efficient if most memory is garbage at the time of collection.  
However, for a given heap size, semi-space requires many more collections than mark-sweep (since it 
only has half the space to work with), and so if most of the objects are reachable at the time of 
collection, semi-space becomes much less efficient than mark-sweep.  
 

3.3   Other variations 
There are many other variations on the basic GC algorithms above.  Due to space constraints, I will 
give only a brief mention to a few of these variations. 
 
Compacting garbage collectors typically use an algorithm like mark-sweep, but also re-arrange the 
objects to coalesce free-space to avoid fragmentation.  This also often has the benefit of keeping the 
objects in memory ordered by their allocation time, which typically improves the locality of 
reference.  Compaction has most of the benefits of the semi-space algorithm (efficient and reliable 
allocation), without the cost of the additional memory.  Compaction does, however, require 
significantly more time and bookkeeping during collection to copy objects and update object 
references appropriately.  
 
Generational garbage collectors are designed under the assumption that objects which are created 
recently are more likely to be garbage than objects which have been alive for a long time.  Such 



collectors typically divide the heap into two or three generations, promoting objects from a 
generation to the next older one when they survive a collection.  With some careful bookkeeping, it is 
then possible to perform partial collections of only the one or two younger generations, avoiding the 
cost of scanning through old objects which are likely to sill be alive.  This results in a lower overhead 
in most scenarios, at the cost of some additional complexity.   
 
Incremental garbage collectors attempt to minimize the pause time incurred due to a collection, at the 
expense of more overhead overall relative to stop-the-world collectors.  This typically involves doing 
a little bit of the GC work at every allocation.  This trade-off is appropriate for some interactive 
applications such as graphics-intensive programs where the user may notice a pause of even a 
fraction of a second.  Concurrent garbage collectors are incremental collectors which perform 
collection in parallel with the program execution by using multiple CPUs.   
 
Most high-performance modern industrial GCs (including the one in Microsoft’s Common Language 
Runtime) are generational mark-sweep compacting collectors, with an optional concurrent mode for 
low-latency applications. 

4 Open problems 
Despite active research for the past 40 years, there are many open problems in garbage collection.  
Working on the Common Language Runtime team at Microsoft, I see that the GC team (which has 
some extremely bright people) is constantly faced with new challenges and unusual scenarios in 
which performance should be improved.  GC algorithm design seems like more of an art than a 
science – constantly trading off various parameters based on the priority of expected usage models.  I 
suspect that GC algorithm research will continue to be an active area of research for the next 40 
years. 
 
In addition to improving performance in various situations, some concrete areas of research include: 

1. Interaction with non-memory resources.  How should a GC account for the fact that objects 
often hold other resources which have an associated cost, and sometimes strict requirements 
on when they must be released for correct behavior of the program?  For example, a process 
can typically only have a certain number of file handles open at once.  Objects representing 
files may keep the associated file handles open until they are collected.  How should a GC 
know to collect unused file objects?  Could the idea of garbage collection be generalized to 
cover all OS resources in addition to just memory? 

2. How should a GC algorithm and OS memory management system co-operate?  For example, 
when should the OS notify a GC to perform a collection rather than page out some memory to 
disk?  When should a GC avoid a collection because the cost of bringing in the pages from 
disk will be higher than the benefit of freeing any memory?  Could the GC-related properties 
of a memory page somehow be summarized in memory, when the page is paged-out to disk 
by the OS? 

3. How can we design GC algorithms which have good average-case performance, while 
limiting their worst-case performance to some provable bound?  This is necessary for real-
time applications which need hard guarantees on the time which certain operations will take 
to complete.  

4. How can a GC algorithm making effective use of highly parallel computers (eg. >32 
processors cores). 



5. How should we design good tools and techniques for diagnosing and visualizing problematic 
memory usage, such as memory leaks and other performance problems?   

5 Conclusions 
Garbage collection has been a mixed blessing for the software industry.  On the one hand, it does 
seem to have greatly improved the productivity of software developers, making writing correct 
software easier in the common cases.  On the other hand, it adds a lot of complexity and uncertainty 
to the implementation of a programming environment.  There are many different variations on GC 
algorithms, and they are usually impossible to evaluate strictly mathematically without considering a 
specific usage model. 
 
With garbage collection it is easier to reason about the correctness of a program, but usually harder to 
reason about it’s performance.  Reasoning about performance of a program in a GC environment 
Overall, garbage collection shifts the burden for a difficult problem from the programmer to the 
programming environment implementer, which for most software engineering scenarios is an 
excellent trade-off.   
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