Garbage Collection Algorithms
Project for CSEP 521, Winter 2007
Rick Byers —byers@cs.washington.edu

1 Problem and applications

Almost all programming languages have a notion of a heap, or free-storayliilomthe

programmer can request memory. Historically, the heap was managedigxpfithe programming
by using allocate and release function calls in a library (such as nmaéocifC, and new/delete in
C++). Explicit memory management has been a significant source of sofiugs, and programmer
pain (for example, using memory after it has been freed, freeingé,tar forgetting to free it at all).

Starting around 1960, algorithms began to be studied for automatic memory managec@anttiiy)
1960] [Collins, 1960]. With automatic memory management, a programmer castrepgee from
the heap (eg. by instantiating a new object with a statement like “new My(Qbjec€# and Java),
and the run-time system does the job of allocating the necessary memory asidgetdo be re-
used when it's no longer needed. Automatic memory management is easier to ess anoi-
prone than explicit memory management, but is also usually considered to bédesg ahd less
flexible.

Automatic memory management is usually implemented by the runtime sysiegna family of
algorithms called “garbage collection”. Lisp was the first widespreagr@mming language to
adopt garbage collection in the early 60s. For various reasons (eg. complexity afemtalkson,
efficiency, and stubbornness of programmers), garbage collection did not become ipopula
mainstream industrial programming until the 90s with the advent in popularity ofvilne Ja
programming language. Today, virtually every modern high-level programminggigedas
garbage collection as a core feature of it's design. Such languages redhad€#, ML, Visual
Basic, Python, Ruby, Scheme, Haskell (basically everything in widespseagkcept for C/C++).
Garbage collection is generally considered to be one of the biggest improven@ogrammer
productivity since the advent of the high-level programming language.

The basic problem of garbage collection is to identify the memory which is no-loegeed by the
application, and to make it available for other allocations. Memory is determiedio longer
needed by the application, if there is no longer any way for the progranetaadie region of
memory in question. The main challenge in designing a GC algorithm is to findhasteisv
“efficient” for typical uses, where efficiency is measured accortbhngany metrics (see part 3).

2 Formalization of the problem

A heap can be thought of as a set of objects, and a distinguished object known as the “rbot”. Eac
object has an address, size, and set of references (which are addresse®bjeatis®r Addresses

can be thought of as non-negative integers in a contiguous address space (from O taxsmmem
limit N). In practice, GC heaps are normally implemented using a subsetaf@maocess address
space (with potentially non-contiguous “segments”), but we can conceptuallhimanto a single
contiguous logical address space. A heap has the constraint that no two objententagy That is,

given any two objects in the heap=(a,s1), and 0=(a,), it is always the case that eitherg<a

(i.e. a occurs entirely beforepor at+s,<a; (& occurs entirely before a

A heap can be modeled as a directed graph with the vertices 0=(a,s) repredgatisy and the

edges representing the references between objects. The problem is thenhgaemtzany point,
modify the heap to improve the desired criteria (mainly availability afespar new allocations)

while preserving the property that any object which is reachable from thstitbexists in the

modified heap. The most common and simplest modification is to remove some or all of the objec
which have no path from the root. Other modifications are also possible, such aswglocati
(changing the address of) objects to coalesce regions of free space, oengesenie ordering

property.

For example, at some point in a program execution, the heap
may look like the graph at right. If the garbage collector
were to run at this point, it would determine thgta and @

are no longer reachable from the root, and therefore should
be considered garbage. The collector may chose to remove
some or all of these garbage objects, and possibly relocate
some of the other reachable objects.

3 Garbage collection algorithms

Garbage collection algorithms have been an active field of research since 1969ar€hmany
different variations on the basic GC algorithms, all of which attempt to maxisome metrics for
typical allocation patterns. The dependence of an algorithm on the allocatemn pathe program
means that there is usually no precise way to compare GC algorithms wittoabasidering the
exact context in which it will be used. In practice, GC algorithms are gechpa using both
imprecise general statements of benefits, and precise measurentaetslwéhavior in specific
benchmark scenarios. Some of the most important metrics for comparing G@algoniclude:
- Minimizing the time spent reclaiming memory.
- Minimizing the amount of wasted memory at all times.
- Minimizing the amount of memory necessary to perform a collection.
- Minimizing the time and resources necessary for the program to accessrtieey during
normal execution (including maximizing CPU cache hit rate and minimizing @&fpalts).
- The above usually implies maximizing the locality of reference, that ietitkency for
objects which are used together, to be near each other in memory.
- Minimizing the pause-time experienced by an application during a collection
- Minimizing the complexity of the algorithm itself (which in practice ofteanslates into
performance, adaptability, maintainability, correctness and secungfits.
- In specialized scenarios (such as small devices) there are often otihes hke maximizing
battery life, or minimizing the number of writes to flash memory.

3.1 Mark-sweep

The earliest and most basic garbage collection algorithm is mark-sweepegaeobagtion

[McCarthy, 1960], and most modern algorithms are a variant on it. Mark-sweepop-dHst

world” collector, which means that at some point when the program requestsynagmarone is
available, the program is stopped and a full garbage collection is performed tgpfspace. In mark-
sweep, each object has a “mark-bit” which is used during the collection pro¢essktwhether the
object has been visited. Here is an algorithm for mark-sweep garb&ggionlimplemented on top
of some underlying explicit memory management routines, in which free regjitms heap are also
considered objects with mark bits and a known size.

mark_sweep_collect() = sweep()
mark(root) 0=0
sweep() While o <N
If mark-bit(o)=1
mark(o) = mark-bit(0)=0
If mark-bit(o)=0 Else
mark-bit(o)=1 free(0)
For p in references(o) EndIf
mark(p) 0 = 0 + size(0)
EndFor EndWhile
EndIf

The mark-sweep algorithm operates in time linear in the size of the reea@((il)). This doesn’t

directly tell us how much overhead it imposes on a program, because it must be invoked wdrenever
allocation fails, and so the overhead depends on parameters such as how big theriehpus, a

much memory has become unreachable since the last GC. In practice, the ovenwelidsathe
pause-time, of mark-sweep collectors is high compared to other algorithms.sWksh does

however have the advantage of freeing all unused memory, but this free menipiyesasnes
fragmented (limiting the availability of larger contiguous regiond)eré is technically a space
overhead for the mark-bit, but in practice a bit is usually re-purposed from someuothiene data
structure, since it's only needed when the program is not running.

3.2 Semi-space

Semi-space garbage collection [Fenichel, 1969] is a copying algorithnh) mieians that reachable
objects are relocated from one address to another during a collection. Avagabdeynis divided
into two equal-size regions called “from-space” and “to-space”. Allocatisimigly a matter of
keeping a pointer into to-space which is incremented by the amount of memory @duesteh
allocation (that is, memory is allocated sequentially out of to-space). iNWéenis insufficient space
in to-space to fulfill an allocation, a collection is performed. A collection stmef swapping the
roles of the regions, and copying the live objects from from-space to to-spaogg edélock of free
space (corresponding to the memory used by all unreachable objects) at the emol-spdce.
Since objects are moved during a collection, the addresses of all refererstdse updated. This is
done by storing a “forwarding-address” for an object when it is copied out ofsfpace. Like the
mark-bit, this forwarding-address can be thought of as an additional field of tlog bbeis usually
implemented by temporarily repurposing some space from the object.

initialize() = collect() =

tospace =0 swap(fromspace, tospace)

fromspace = N/2 allocPtr = tospace

allocPtr = tospace root = copy(root)

allocate(n) = copy(o) =

If allocPtr + n > tospace + N/2 If o has no forwarding address
collect() o’ = allocPtr

EndIf allocPtr = allocPtr + size(0)

If allocPtr + n > tospace + N/2 copy the contents of o to 0’
fail “insufficient memory” forwarding-address(o) = 0’

EndIf ForEach reference r from o’

o = allocPtr r = copy(r)

allocPtr = allocPtr + n EndForEach

return o EndIf

return forwarding-address(o)

The primary benefits of semi-space collection over mark-sweep are ttadloitegion costs are
extremely low (no need to maintain and search lists of free memory), ancefragion is avoided.
In addition to improving the efficiency and reliability of allocation, avoidiragmentation also
improves the locality of reference which means the program will typinatiyaster (due to paging
and CPU cache effects). The primary drawback of semi-space is thainésdguce as much
memory — at any given time during program execution, half of the availablenpeannot be used.
Semi-space collection executes in time proportional to the amount of reacleshdeynand so
unlike mark-sweep, can be very efficient if most memory is garbage tatrnef collection.
However, for a given heap size, semi-space requires many more collelcinmsdrk-sweep (since it
only has half the space to work with), and so if most of the objects are reachhblérat of
collection, semi-space becomes much less efficient than mark-sweep.

3.3 Other variations

There are many other variations on the basic GC algorithms above. Due tosstuicgnts, | will
give only a brief mention to a few of these variations.

Compacting garbage collectors typically use an algorithm like maglejsvbut also re-arrange the
objects to coalesce free-space to avoid fragmentation. This also often has th@blkeeping the
objects in memory ordered by their allocation time, which typically imprthe$ocality of
reference. Compaction has most of the benefits of the semi-space aldefftbient and reliable
allocation), without the cost of the additional memory. Compaction does, however, require
significantly more time and bookkeeping during collection to copy objects and update obje
references appropriately.

Generational garbage collectors are designed under the assumption thawdbgcese created
recently are more likely to be garbage than objects which have been alive for alengtich

collectors typically divide the heap into two or three generations, promotingobj@tt a
generation to the next older one when they survive a collection. With some careful baulkieepi
then possible to perform partial collections of only the one or two younger iengravoiding the
cost of scanning through old objects which are likely to sill be alive. This r@salt®wer overhead
in most scenarios, at the cost of some additional complexity.

Incremental garbage collectors attempt to minimize the pause tiomeada@ue to a collection, at the
expense of more overhead overall relative to stop-the-world collectors. Thislyicalves doing

a little bit of the GC work at every allocation. This trade-off is appropfaatesome interactive
applications such as graphics-intensive programs where the user mayargdicse of even a
fraction of a second. Concurrent garbage collectors are incrementalarsligbich perform
collection in parallel with the program execution by using multiple CPUs.

Most high-performance modern industrial GCs (including the one in Microsoft'sr@onhanguage
Runtime) are generational mark-sweep compacting collectors, with amaptoncurrent mode for
low-latency applications.

4 Open problems

Despite active research for the past 40 years, there are many open prolgarbsage collection.
Working on the Common Language Runtime team at Microsoft, | see that the@Qukich has
some extremely bright people) is constantly faced with new challenges anluszenarios in
which performance should be improved. GC algorithm design seems like more of an art tha
science — constantly trading off various parameters based on the priority aeedpsmge models. |
suspect that GC algorithm research will continue to be an active areaarctefor the next 40
years.

In addition to improving performance in various situations, some concrete areasarch include:

1. Interaction with non-memory resources. How should a GC account for the fact th&t objec
often hold other resources which have an associated cost, and sometimes stiechesqsii
on when they must be released for correct behavior of the program? For exampless proc
can typically only have a certain number of file handles open at once. Objecten¢ipige
files may keep the associated file handles open until they are collectadshidold a GC
know to collect unused file objects? Could the idea of garbage collection beligeddrma
cover all OS resources in addition to just memory?

2. How should a GC algorithm and OS memory management system co-operate? fpbe,exam
when should the OS notify a GC to perform a collection rather than page out someytreemor
disk? When should a GC avoid a collection because the cost of bringing in the pages from
disk will be higher than the benefit of freeing any memory? Could the G@dglabperties
of a memory page somehow be summarized in memory, when the page is paged-out to disk
by the OS?

3. How can we design GC algorithms which have good average-case performatee, whi
limiting their worst-case performance to some provable bound? This is ngdessaal-
time applications which need hard guarantees on the time which certain opexdtitaise
to complete.

4. How can a GC algorithm making effective use of highly parallel computers32g
processors cores).

5. How should we design good tools and techniques for diagnosing and visualizing problematic
memory usage, such as memory leaks and other performance problems?

5 Conclusions

Garbage collection has been a mixed blessing for the software industry. On badnie does
seem to have greatly improved the productivity of software developers, malkiimg worrect
software easier in the common cases. On the other hand, it adds a lot of cgrapkkxibcertainty
to the implementation of a programming environment. There are many differetioves on GC
algorithms, and they are usually impossible to evaluate strictly maticaftyatvithout considering a
specific usage model.

With garbage collection it is easier to reason about the correctness ofanprbgt usually harder to
reason about it's performance. Reasoning about performance of a program imarGidresnt
Overall, garbage collection shifts the burden for a difficult problem from thgrgmmer to the
programming environment implementer, which for most software engineegngrses is an
excellent trade-off.

6 References

[Collins, 1960] George E. Collins. A method for overlapping and erasure of@ietamunications
of the ACM, 3(12):655-657, December 1960

[Fenichel, 1969] Robert R. Fenichel and Jerome C. Yochelson. A Lisp garbage coliecioudb
memory computer system&ommunications of the ACM, 12(11):611-612, November 1969

[McCarthy, 1960] John McCarthy. Recursive functions of symbolic expressionsand t
computation by machineCommunications of the ACM, 3:184-195, 1960

