
Applied Algorithms

Finding All Maximal Scoring Subsequences

3/12/2007

Mary Ann Joy

Introduction: In molecular biology while analyzing large sequences of DNA or

protein it is important to identify unusual subsequences. An often used technique is to

assign a score to each nucleotide or amino acid and then search for contiguous sequences

with high scores.

Problem Definition: Given an input sequence (x1, x2,………… xn) of positive and negative

real numbers. We define the score of a consecutive subsequence (xi, xi+1,………… xj) as Sij =

∑xk . The goal is to identify all disjoint, contiguous subsequences having positive

i<=k<=j

scores. We refer to these sequences as maximal scoring subsequences. In order to avoid

overlapping sequences with tied scores we do not allow sequences with non empty zero

prefixes or suffixes.

Quadratic algorithm:

We first define an algorithm that finds a subsequence with the maximum score. This

algorithm was given by Bates and Constable [1]. Let Mn be the maximum subsequence

with score m for a subsequence of (x1, x2,………… xn).

Let us consider the scores of all subsequences ending in xn. Let Ln be the subsequence

with maximum score l among all such subsequences.

By induction when n = 1, L1 = x1; Assume for a sequence of length n, Ln is the

maximum value subsequence ending in xn. When we add xn+1; Ln+1 is either xn+1 or Ln +

xn+1 whichever is larger.

 Ln+1 = Max (xn+1, Ln + xn+1) ------------------------1

Let us calculate Mn+1 when we add xn+1 to our input sequence:

Case 1: xn+1 is not part of the maximum scoring subsequence; i.e Mn+1 = Mn.

Case2: The new maximum subsequence does include xn+1.

Combining the two cases we get:

Mn+1 = Max (Mn, Ln+1)

Mn+1 = Max (Mn, Max (xn+1, Ln + xn+1)) (Substituting for Ln+1 from 1)

The following algorithm can be used to solve this problem:

If xn+1 > 0 then

 If xn ε M then

 Add xn+1 to M

 Else

 Add xn+1 to L

 If l > m then

 Replace M by L

 Endif

 Endif

Else

 Reset L.

Example: If the input sequence (3, 5, 10, -5, -30, 5, 7, 2, -3, 10, -7, 5), then M = (5, 7, 2,

-3, 10) and m = 21. L = (5, 7, 2, -3, 10, -7, 5) with l = 19. Now if the next element we

want to add is 40. Then M = S = (5, 7, 2, -3, 10, -7, 5) with the new maximum score = 59.

Analysis: This is a linear time algorithm. Given this algorithm we can use a divide and

conquer approach to calculate all maximal subsequences. We first find the highest

scoring subsequence, remove it and then recursively apply the algorithm to the remaining

sequence on the left and then on the right. If the input sequence is random the running

time of this algorithm could be O(nlogn). However if the maximal subsequence always

falls at one end of the sequence then the worst case complexity could be O(n
2
).

Linear time Algorithm

We now look at an algorithm that finds all maximum subsequences in linear time. This

algorithm was introduced in a paper by Ruzzo and Tompa [2]. Given a sequence: (x1,

x2,………… xn) of length n; let I1, I2,………… Ik-1 be an ordered list of disjoint maximal score

subsequences. For n = 0 the list is empty. For each Ij in our list we keep track of two

scores, Lj: is the total cumulative score of all scores up to but not including the left most

score in Ij. And Rj is the cumulative total of all the scores in the sequence up to and

including the rightmost score in Ij. The score of the subsequence represented by the list Ij

is Rj - Lj.

Initially our list is empty.

Let us consider the point when we add the xn+1
th

 element in the sequence:

Case 1:

 xn+1 is negative; then we do nothing.

Case 2:

xn+1 is positive. Then our new ordered list will be I1, I2,………… Ik-1, Ik. Where = Ik = {xn+1}.

Case 2.a: There exists a list Ij (1<=j<=k-1) such that by adding Ik as a suffix to Ij we

create a new list I’j with score greater than that of both Ik and Ij. In this case we will

grow Ij to include all the scores in the sequence up to and including xn+1. And we remove

all the lists from Ij+1 to Ik. The total score for I’j = Rk - Lj. Our condition for merging the

two lists was:

Rk - Lj > Rk – Lk and

Rk - Lj > Rj - Lj

���� Lj < Lk and Rj < Rk.

Formally the algorithm as given by [2] is:

Initially the list is empty. Input scores are processed as follows. If the score is negative do

nothing. If it is positive then create a new subsequence Ik of length 1. This list is added to

the existing list of subsequences by the following steps.

1. The list is searched from right to left for the maximum value of j satisfying Lj <

Lk.

2. If there is no such j, then add Ik to the end of the list.

3. If there is such a j and Rj >= Rk, then add Ik to the end of the list.

4. Otherwise, extend the subsequence Ik to the left to encompass everything up to

and including the leftmost score in Ij. Delete subsequences Ij , Ij+1 …. Ik-1. Now

reconsider the newly extended subsequence Ik (now renamed) as Ij in step 1.

When we get to the end of our input all subsequences remaining in our list are maximal.

Example: Consider the input sequence (3, -5, 2, 3, -1, 1, -1, 6). After reading the first 7

scores the list of disjoint subsequences is:

I1= (3), I2= (2, 3), I3= (1) with (L1, R1) = (0,3), (L2, R2) = (-2, 3) and (L3, R3) = (2, 3). The

9
th

 input is 6 which is added as I4= (6) and (L4, R4) = (2 ,8). When we scan through the

list from right to left we find I2 to be the list with L2 < L4 and R2 < R4. So we expand L2

to include (2, 3, -1, 1, -1, 6) and delete I3 and I4. The maximal subsequences at the end of

the algorithm are: (3) and (2, 3, -1, 1, -1, 6).

Analysis: We have to apply some optimizations to the above algorithm to make it a

linear time algorithm. In step 2 if we cannot find any j then all the lists up until that point

are maximal and we can output those subsequences and reset our list with Ik = I1.

Similarly in step 3 when we add Ik we keep a pointer to the subsequence Ij. Now in step 1

instead of scanning through the entire list we just search this linked list of subsequences.

The resulting optimized algorithm has O(n) complexity.

Further Areas of Research: Alves, Caceres and Song [3] have presented a parallel

algorithm to compute the basic maximum subsequence problem. Given p processors they

divide the input into p sequences each of size n/p. On each of the processors the

subsequence is partitioned into 5 subsequences. These 5 subsequences are then reduced

to 5 numbers. Processor 1 receives these 5 numbers from each of the p processors and

then combines them in linear time to find the maximum subsequence in O(n/p) time. It

would be interesting to research extending this algorithm to solve the problem of finding

all maximal subsequences.

References:

1. Bates, J. L., and Constable, R. L. 1985. Proofs as programs.

2. Ruzzo W. L. and Tompa M. 1999. A Linear Time Algorithm for Finding All

Maximal Scoring Subsequences.

3. Alves C. E. R., Caceres E. N. and Song S. W. 2003. Computing Maximum

Subsequence in Parallel.

