
Applied Algorithms 

Finding All Maximal Scoring Subsequences 

3/12/2007 

Mary Ann Joy 

 

Introduction: In molecular biology while analyzing large sequences of DNA or 

protein it is important to identify unusual subsequences. An often used technique is to 

assign a score to each nucleotide or amino acid and then search for contiguous sequences 

with high scores.  

Problem Definition: Given an input sequence (x1, x2,………… xn) of positive and negative 

real numbers. We define the score of a consecutive subsequence (xi, xi+1,………… xj) as Sij =             

∑xk      . The goal is to identify all disjoint, contiguous subsequences having positive  

i<=k<=j 

scores. We refer to these sequences as maximal scoring subsequences. In order to avoid 

overlapping sequences with tied scores we do not allow sequences with non empty zero 

prefixes or suffixes.  

 

Quadratic algorithm:  

We first define an algorithm that finds a subsequence with the maximum score. This 

algorithm was given by Bates and Constable [1]. Let Mn be the maximum subsequence 

with score m for a subsequence of (x1, x2,………… xn).  

Let us consider the scores of all subsequences ending in xn. Let Ln be the subsequence 

with maximum score l among all such subsequences.  

By induction when n = 1, L1 = x1; Assume for a sequence of length n,  Ln is the 

maximum value subsequence ending in xn. When we add xn+1; Ln+1 is either xn+1 or  Ln + 

xn+1 whichever is larger. 

 Ln+1 = Max (xn+1,  Ln + xn+1) ------------------------1 

 

Let us calculate Mn+1 when we add xn+1 to our input sequence: 

Case 1: xn+1 is not part of the maximum scoring subsequence; i.e Mn+1  = Mn. 



Case2: The new maximum subsequence does include xn+1.  

Combining the two cases we get: 

Mn+1 = Max (Mn, Ln+1) 

Mn+1 = Max (Mn, Max (xn+1,  Ln + xn+1))        (Substituting for Ln+1 from 1) 

 

The following algorithm can be used to solve this problem: 

If xn+1 > 0 then  

 If xn ε M then 

  Add xn+1  to M 

 Else  

  Add xn+1  to L 

  If l > m then 

   Replace M by L 

  Endif 

 Endif 

Else 

 Reset L. 

 

Example: If the input sequence (3, 5, 10, -5, -30, 5, 7, 2, -3, 10, -7, 5), then M = (5, 7, 2, 

-3, 10) and m = 21. L = (5, 7, 2, -3, 10, -7, 5) with l = 19. Now if the next element we 

want to add is 40. Then M = S = (5, 7, 2, -3, 10, -7, 5) with the new maximum score = 59. 

 

Analysis: This is a linear time algorithm. Given this algorithm we can use a divide and 

conquer approach to calculate all maximal subsequences. We first find the highest 

scoring subsequence, remove it and then recursively apply the algorithm to the remaining 

sequence on the left and then on the right. If the input sequence is random the running 

time of this algorithm could be O(nlogn). However if the maximal subsequence always 

falls at one end of the sequence then the worst case complexity could be O(n
2
). 

 

Linear time Algorithm 

We now look at an algorithm that finds all maximum subsequences in linear time. This 

algorithm was introduced in a paper by Ruzzo and Tompa [2]. Given a sequence: (x1, 

x2,………… xn) of length n; let I1, I2,………… Ik-1 be an ordered list of disjoint maximal score 

subsequences. For n = 0 the list is empty. For each Ij in our list we keep track of two 



scores, Lj: is the total cumulative score of all scores up to but not including the left most 

score in Ij. And Rj is the cumulative total of all the scores in the sequence up to and 

including the rightmost score in Ij. The score of the subsequence represented by the list Ij 

is Rj -  Lj. 

Initially our list is empty. 

Let us consider the point when we add the xn+1
th

 element in the sequence: 

Case 1: 

 xn+1 is negative; then we do nothing. 

Case 2:  

xn+1 is positive. Then our new ordered list will be I1, I2,………… Ik-1, Ik. Where = Ik = {xn+1}. 

Case 2.a: There exists a list Ij (1<=j<=k-1) such that by adding Ik as a suffix to Ij we 

create a new list I’j  with score greater than that of both Ik and Ij.  In this case we will 

grow Ij to include all the scores in the sequence up to and including xn+1. And we remove 

all the lists from Ij+1 to Ik.  The total score for I’j = Rk - Lj. Our condition for merging the 

two lists was: 

Rk - Lj > Rk – Lk  and 

Rk - Lj > Rj - Lj 

���� Lj < Lk and Rj < Rk. 

 

Formally the algorithm as given by [2] is: 

Initially the list is empty. Input scores are processed as follows. If the score is negative do 

nothing. If it is positive then create a new subsequence Ik of length 1. This list is added to 

the existing list of subsequences by the following steps.  

1. The list is searched from right to left for the maximum value of j satisfying Lj < 

Lk. 

2. If there is no such j, then add Ik to the end of the list. 

3. If there is such a j and Rj >= Rk, then add Ik to the end of the list. 

4. Otherwise, extend the subsequence Ik to the left to encompass everything up to 

and including the leftmost score in Ij. Delete subsequences Ij , Ij+1 …. Ik-1.  Now 

reconsider the newly extended subsequence Ik (now renamed ) as Ij in step 1. 

When we get to the end of our input all subsequences remaining in our list are maximal.  



 

Example: Consider the input sequence (3, -5, 2, 3, -1, 1, -1, 6). After reading the first 7 

scores the list of disjoint subsequences is: 

I1= (3), I2= (2, 3), I3= (1) with (L1, R1) = (0,3), (L2, R2) = (-2, 3) and (L3, R3) = (2, 3). The 

9
th

 input is 6 which is added as I4= (6) and (L4, R4) = (2 ,8). When we scan through the 

list from right to left we find I2 to be the list with L2 < L4 and R2 < R4. So we expand L2 

to include (2, 3, -1, 1, -1, 6) and delete I3 and I4. The maximal subsequences at the end of 

the algorithm are: (3) and (2, 3, -1, 1, -1, 6). 

 

Analysis: We have to apply some optimizations to the above algorithm to make it a 

linear time algorithm. In step 2 if we cannot find any j then all the lists up until that point 

are maximal and we can output those subsequences and reset our list with Ik = I1. 

Similarly in step 3 when we add Ik we keep a pointer to the subsequence Ij. Now in step 1 

instead of scanning through the entire list we just search this linked list of subsequences. 

The resulting optimized algorithm has O(n) complexity.  

 

Further Areas of Research: Alves, Caceres and Song [3] have presented a parallel 

algorithm to compute the basic maximum subsequence problem. Given p processors they 

divide the input into p sequences each of size n/p. On each of the processors the 

subsequence is partitioned into 5 subsequences. These 5 subsequences are then reduced 

to 5 numbers. Processor 1 receives these 5 numbers from each of the p processors and 

then combines them in linear time to find the maximum subsequence in O(n/p) time. It 

would be interesting to research extending this algorithm to solve the problem of finding 

all maximal subsequences.  
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