
Hogg/Russell p1/9

Biological Sequence Analysis

CSEP 521: Applied Algorithms – Final Project

Archie Russell (0638782), Jason Hogg (0641054)

Introduction

Background

The schematic for every living organism is stored in long molecules known as chromosomes made of a substance

known as DNA (deoxyribonucleic acid. Each cell in an organism has a complete copy of its DNA, also known as its

genomewhich is conveniently modeled as a sequence of symbols (alternately referred to as nucleotides or bases) in

the DNA alphabet {A,C,T,G}. In humans, and most mammals, this sequence is about 3 billion bases long.

Through a process known as protein synthesis, instructions in our DNA, known as genes, are interpreted by

machinery in our bodies and transformed first into intermediate molecules called RNA, and then into structures

called proteins, which are the primary actors in living systems. These molecules can also be modeled as sequences

of symbols.

These genes determine core characteristics of the development of an organism, as well as its day-to-day

operations. For example, the Hox
1
 gene family determines where limbs and other body parts will grow in a

developing fetus, and defects in the BRCA1 gene are implicated in

breast cancer.

The rate of data acquisition has been immense. As of 2006,

GenBank, the national public repository for sequence

information, had accumulated over 130 billion bases of DNA and

RNA sequence, a 200-fold increase over the 1996 total
2
. Over

10,000 species have at least one sequence in GenBank, and 50

species have at least 100,000 sequences
3
. Complete genome

sequences, each roughly 3-gigabases in size, are available for

human, mouse, rat, dog, cat, cow, chicken, elephant,

chimpanzee, as well as many non-mammals. Technology

continues to make sequencing (the process of determining

sequences) cheaper; the first complete sequencing of the human

genome cost $2.7 billion
4
, achieving the same for $10,000 is now

on the horizon
5
.

1
 Wikipedia article on Hox genes: http://en.wikipedia.org/wiki/Hox

2
 Statistics from http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html and

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide
3
 dbEST summary: http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html

4
 Human Genome Project FAQ http://www.genome.gov/11006943

5
 The Archon X-prize: http://genomics.xprize.org/ (this is not an outlandish goal)

http://genomics.xprize.org/

Hogg/Russell p2/9

Sequence Similarity – Why does it matter?

One of the most common computational operations on sequences is a sequence similarity search. A typical search

compares one query sequence to a larger database of sequences and tries to find alignments between the query

and database that reflect similarities between the two. These searches are valuable to researchers because of the

nature of evolution, and the nature of scientific research. All known species, whether yeast, puffer-fish, mice, or

humans appear to be related to each other (see Figure 1
6
, but it is more convenient to do scientific experiments on

yeast or mice than on humans. Researchers may be able to determine a gene in mouse which is responsible for a

condition such as obesity; a sequence similarity search helps pinpoint the analogues of that gene in humans.

Similarity searches are also used within a single species; portions of a gene, called domains, are often duplicated

among several genes. Finally, similarity searches allow researchers to infer which parts of our DNA are important.

Relevant portions of our genome are less

likely to have changed over time than less-

important regions. A similarity search that

detects regions in common between

evolutionarily distant species has probably

also detected very important genomic

regions.

In order to perform these kinds of

sequence analysis several factors must be

considered. These include how to score

individual matches across sequences,

whether to perform global or local searches,

what type of algorithm to use and finally

how to evaluate results to determine the

statistical significance of an alignment score.

We provide a high-level introduction to

these processes with the goal being to

simply to provide context for our detailed

evaluation of the Smith-Waterman and

BLAST algorithms. A complete description of

each of these processes can be found in

papers written by their authors
8,11

.

Scoring model

When comparing sequences we are looking for evidence that portions of a sequence may be related even though

mutations may have occurred between the sequences. DNA can change in one of two ways. The first type of

change is called a substitution, whereby a base of one type is substituted for another type. The second type of

change is based on gap, whereby an insertion or deletion of a base is made to the original sequence.

6
 Kent, W.J., Sugnet, C. W., Furey, T. S., Roskin, K.M., Pringle, T. H., Zahler, A. M., and Haussler, D. The Human

Genome Browser at UCSC. Genome Research 12(6), 996-1006 (2002).
7
 http://en.wikipedia.org/wiki/BRCA1

8
 Smith, T.F. and Waterman, M.S. 1981, Identification of common molecular subsequences, Jounal of Molecular

Biology, 147:195-197

Figure 1: Similarity between human BRCA1 gene region and other
species. Green regions are similar.

Figure 2a: Zoomed-in view of highly similar area from above, each row
of ACTG corresponds to one species.

http://www.genome.org/cgi/content/abstract/12/6/996
http://www.genome.org/cgi/content/abstract/12/6/996
http://www.genome.org/cgi/content/abstract/12/6/996

Hogg/Russell p3/9

The most fundamental scoring mechanism for evaluating substitutions uses substitution matrices. A substitution

matrix for DNA sequences establishes a score for each pair of bases encountered in two input sequences. The

score is positive if the bases are identical and usually negative if they are different. Various models exist for

establishing substitution matrices based on the type of data being analyzed. For our example, we'll use a subset of

the default scoring matrix, illustrated in Table 1.

Different approaches also exist for penalizing gaps in sequences. The first approach known as a linear score, simply

applies a linear penalty of d based on the length of the gap. A second approach known as an affine score can be

used to reduce the penalty burden where long insertions or deletions may occur.

Alignment algorithms

Alignment algorithms are used to determine the optimal alignment of a pair of sequences based on a particular

scoring mechanism. Fundamentally, two different alignment problems exist. Global Alignment finds the best

alignment from start to end of both sequences (with provision for gaps). Local Alignment is used to find

subsequences of a sequence that have the best alignment

The Needleman-Wunsch algorithm is a dynamic algorithm that can be used to analyze global alignments, and was

covered in class. The Smith-Waterman algorithm modifies the Needleman-Wunsch algorithm to allow it to search

for local alignments. Local Alignment often works better for sequence similarity searches, because over the eons,

stretches of DNA have been chopped up and re-arranged in ways that don’t make for good global alignments.

Although these dynamic algorithms will find optimal matches, they are computationally expensive, especially for

large datasets. As such, heuristic algorithms such as BLAST have also been developed to reduce the computational

burden on evaluations. We will discuss Smith-Waterman and BLAST in more detail in the rest of the paper.

Significance of scores

Having found an optimal alignment it is important to determine whether the alignment is statistically significant or

whether the alignment is no more likely than we’d expect by random chance and uninteresting to a user. Two

models exist for performing this analysis – a Bayesian approach and a statistical approach. Discussion of these

algorithms is out of scope for this paper, however the importance for evaluating significance of scores is included

simply to complete the discussion on the process by which analysis is performed.

Smith-Waterman

Motivation
The Smith-Waterman algorithm is a dynamic algorithm that is used to find local alignments of a subsequence

within a larger sequence. Dynamic algorithms are guaranteed to find the optimal scoring alignment but can be

computationally resource intensive. Smith-Waterman is based on the Needleman-Wunsch
9
 algorithm which is

used for obtaining optimal global alignment across pairs of sequences that may include gaps.

Design of the algorithm
As with all dynamic-programming algorithms Smith-Waterman establishes an optimal overall solution using

optimal solutions to smaller sub-problems – or in this case optimal alignments on smaller subsequences. The

algorithm establishes an i * j matrix designated F, where i and j are the widths of the respective subsequence and

sequence. As we will describe shortly, the completed matrix F can be searched for optimal alignments.

9
 Needleman S.B. and Wunsch, C.D. 1970. A general method applicable to the search for similarities in the amino

acid sequence of two proteins. Journal of Molecular Biology 48:443-453

Hogg/Russell p4/9

For Smith-Waterman we start by initializing the following cells of F:

- F(0,0) = 0

- F(x, 0) = 0, where 0 <= x < i

- F(0, y) = 0 , where 0 <= y < j

The values for the remaining cells are calculated using the following recursive algorithm:

𝐹 𝑖, 𝑗 = 𝑚𝑎𝑥

0,

𝐹 𝑖 − 1, 𝑗 − 1 + 𝑠 𝑥𝑖 ,𝑦𝑖 ,

𝐹 𝑖 − 1, 𝑗 − 𝑑,

𝐹 𝑖, 𝑗 − 1 − 𝑑.

The score 𝑠 𝑥𝑖 ,𝑦𝑖 is found using a substitution matrix as mentioned briefly earlier. A substitution matrix

establishes a log-odds ratio providing a score for the alignment between two bases across sequences. A better

alignment will have a higher score than a lower alignment.

The value for d is based on the approach used for gap penalization. Two approaches exist. The first approach is to

use a linear score in which a penalty g is simply multiplied by the size of the gap d.

𝛾 𝑔 = −𝑔𝑑

A second approach is based on an affine score which reduces the penalty burden where long insertions or

deletions may occur in one of the sequences.

𝛾 𝑔 = −𝑑 − 𝑔 − 1 𝑒

After we have evaluated each of the four equations for each cell F(i, j) we take the maximum value and assign that

to F(i, j). Where a cell contains a non-zero record we also include a pointer to the cell that represents the sub-

problem (either {(i-1, j-1) (i-1, j) (i, j-1)} that served as the basis for this problem. This pointer is used to support

back tracking which is used as the basis for establishing the optimal sub-sequence.

Once the matrix F is complete we then search the entire matrix F(i, j) for the highest value. This marks the start of

our optimal alignment. At this point we must back track through the matrix following the pointers established

earlier - until we find a zero score which marks the end of the optimal sequence.

Complexity Analysis
The Smith-Waterman algorithm requires the establishment of a matrix of size n * m, where n and m are the length

of the query and target sequences. Each cell within F requires the comparison for maximum value of 4 values

which are calculated in constant time. After the m*n matrix is populated, Smith-Waterman searches the matrix

looking for the highest value and then constructs the optimal alignment. As such the algorithm requires O(nm)

time and O(nm) memory. Some of the literature makes the assumption that n and m are roughly the same,

simplifying the complexity to O(n
2
). This is reasonable for most comparisons of protein sequences, but this isn’t

always appropriate; the typical size of a gene is orders of magnitude smaller than the genome. For example the

BRCA1
7
 gene is about 80,000 bases long, much shorter than the 3-gigabase human genome.

Example
In this example we will show how Smith-Waterman would search for the best local alignment between the

sequences GACTAC and CTA.

Hogg/Russell p5/9

We will use a subset of the default scoring matrix that is used by the FASTA algorithm

package (weizmann). The subset focuses only on the bases {A, C, G, T} (the FASTA

package also includes “incomplete” symbols in its scoring matrix, for instance an R

corresponds to either A or G
10

). . FASTA includes multiple programs, including

SSEARCH which is an implementation of the Smith-Waterman package. For the sake of

simplicity, we will also assume a linear gap penalizing value of g=1.

Table 2 - F(i, j) values

Values

F(i,j) are included inside Table 2. Cell

references are included where F(I,j)

is based on the value from another

cell. The values in bold/red indicate

the values found after locating the

maximum score, 15 at cell (3,5).

Arrows illustrate back-tracking and

the optimal local alignment of the

sequence CTA within the sequence

GACTAC.

BLAST

Motivation
While Smith-Waterman produces optimal results, its O(MN) running time can be exorbitant. BLAST, an acronym
for Basic Local Alignment Search Tool, was built with this in mind

11
. BLAST uses a heuristic approach. It will find

most of the results that an optimal approach finds, but in an order of magnitude less time. However, this comes
at a cost; BLAST will miss a small fraction of the results found by optimal algorithms.

12

Algorithm Design
The BLAST approach is to find short, but very high-similarity "seed" matches between a query and database

sequence, following this with an extension of these matches into less similar regions, until it finds a maximal

segment pair (MSP), which BLAST defines as "the highest scoring pair of idneticcal length segments chosen from

10

Nomenclature for Incompletely Specified Bases in Nucleic Acid Sequences

http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html#302
11

 Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignment search tool. Journal
of Moleculary Biology 215:403-410
12

 E.g. a comparison that scientists might be interested in is comparing a single mRNA sequence about 10,000
base-pairs in length to the complete collection of "EST" sequences of about 20 million members, each 500 bases in
length. Smith-Waterman on these inputs could result in something approaching 10

13
 matrix cell comparisons. A

single search like this could take hours or days to complete

 A C G T

A 5 -4 -4 -4

C -4 5 -4 -4

G -4 -4 5 -4

T -4 -4 -4 5

Table 1: Scoring matrix used in
our example

F(i, j) 0 1 (C) 2 (T) 3 (A)

0 0 0 0 0

1 (G) 0 0 0 0

2 (A) 0 0 0 5

3 (C) 0 5 0 4 (3,2)

4 (T) 0 4 (1,3) 10 (1,4) 9 (2,4)

5 (A) 0 2 (1,4) 9 (2,4) 15 (2,4)

6 (C) 0 5 7 (2,5) 14 (3,5)

Hogg/Russell p6/9

two sequences". The key insight behind the design of BLAST is that most statistically significant hits -- hits that a

user might be interested in -- will have at least one high-quality short "seed" match.

Breaking query sequence into "words"

A typical
13

 BLAST run first divides a DNA input sequence contiguous "words" of length w (12 has been empirically
determined as a good value for w). An n letter sequence will be broken into n - w + 1 words:

 AATTGGACTGATTAAGGT....

 is broken into the following words:

 AATTGGACTGAT

 ATTGGACTGATT

 TTGGACTGATTA

 TGGACTGATTAA

 (etc)

With w=12, and 4 symbols in the DNA alphabet, we can map each of the possible 4
12

(16,777,216)

words to an

integer. This integer can be used as an index into a table with pointers into the query sequence where the query

sequence contains the words. In practice, for a given query many of these 12-mers won't occur at all; so the table

is actually much smaller.
14

Scanning the database for hits

Once the table of query words is assembled, BLAST scans its database linearly for matches to these query words.
Compression of the DNA alphabet to two bits per symbol is straightforward (A=00, C=01, etc.). Using this scheme,
the BLAST database represents eight bases using only two bytes of memory. With w=12, each hit must contain at
least one eight-letter hit aligned to a byte boundary. Comparison to words on boundaries can usually be
performed much faster than non-aligned comparisons which require additional shift operations, so BLAST only
compares database sequences aligned to byte boundaries to the query words.

BLAST's authors also describe a finite-state machine approach to database scanning, which we've skipped for

simplicity.
15

Filtering uninformative words

Some words appear in so many regions that they add little information but can trigger BLAST to begin many slow

extension steps that don't produce interesting results. An example is the "repeat" sequence ATATATAT which

appears tens of thousands of times throughout the genome. The program that prepares sequence databases for

BLAST tabulates the frequency of 8-letter words, and creates a list of "uninformative" words that are used to filter

portions of the query sequences.

Hit extension and scoring

For each "hit" BLAST finds, between the query and database, BLAST uses a dynamic programming approach to

extend the hit in both directions. The extension terminates when reaching a score that falls more than some

distance below the best score among all shorter extensions. This extension process can be slow, especially if

many hits are found, but has the advantage of allowing "gaps" in the alignments. Based on the length, number of

13

 This varies for protein sequence comparisons. Proteins are broken into (n-w) words (typically, w=4). Each of
these then balloon into the ~50 w-letter words that, if found in the database, would match the query word with
score better than some threshold.
14

 The authors don't describe how; a simple technique like taking the mod of the integer will suffice.
15

 BLAST apparently uses the 2
nd

 of these, but the authors don't describe it in any significant detail. They reference
Hopcroft and Ullman, '79, Introduction to Automata Theory, Languages and Computation p42-45

Hogg/Russell p7/9

mismatches, and number and size of gaps in the final alignment, BLAST assigns an "expect" value to the hit,

expressing how many similar scoring hits BLAST would expect to find with similar sized inputs by random chance.

Complexity

We were unable to find published time-complexities for BLAST. With a moderate sized query sequence, scanning

a database of size n happens in O(n) time, but each hit then triggers a potentially expensive extension phase.

Because BLAST is intended to improve results in practice, looking at running-time from real world results (below)

may be more relevant than worst-case style analysis.

Comparing Smith-Waterman and BLAST

Speed

A primary goal in the design of BLAST is performance, and it succeeds with flying colors. For typical inputs, BLAST
is an order of magnitude faster than Smith-Waterman

17
 (see Table 3 below). This increase in performance is

especially important when searching large bodies of data. For example, searching the 3-billion base human genome

for the 80-thousand base BRCA1 gene that we mentioned earlier with Smith-Waterman would build a matrix with

over 200 trillion cells.

Table 3: Library Search Times
16

Computer BLASTP Smith Waterman

DEC Alpha 2100 0.5 min 10.1 min

Sun Sparc10 1.6 min 55.7 min

Times given for a search using the OPSD_HUMAN protein as query and SWISS-PROT release 31 (43,470 sequences)
as the database.

Quality of Results

BLAST and Smith-Waterman results, when compared to a respected "gold standard", are roughly similar. BLAST

found 379 of the proteins acknowledged by scientists to be related to the protein OPSD_HUMAN, while Smith-

Waterman found 394. From a user's point of view, this tradeoff is a no-brainer– BLAST speeds up their work 20-

fold without much degradation of results
17

Table 4: Algorithm Seach Sensitivity

Protein BLASTP Smith-Waterman

OPSD_HUMAN 379 394

GTB1_MOUSE 66 63
(Numbers of known family members with expectation < 2.0)

BLAST Drawbacks

Because it requires exact matches over a certain length, BLAST typically misses some results. Most researchers
don't mind the difference, but some consider these differences quite seriously. When similarities are very weak,
such as between very distantly related species, BLAST may miss a larger portion of results. BLAST is much faster
than Smith-Waterman, but still slower than a researcher would like. Though BLAST finds alignments with short
gaps, it terminates when gaps get large. Because of a phenomenon called "splicing", long gaps are actually very
common, causing BLAST to generate many small results rather than long "stitched together" results.

17

 Pearson W.R. 1996, Effective protein sequence comparison. Methods in Enzymology Vol 266: 277-258 More
detailed studies have also been performed showing similar trends.

Hogg/Russell p8/9

Further work

Since BLAST's release in 1990, sequence similarity work has continued. One path has been hardware acceleration
(or exploitation). Another has been development of specialized algorithms that are faster or better than BLAST for
specific problems.

Hardware acceleration/exploitation
Multiple companies have tried to improve sequence similarity performance with either custom hardware or
making better use of underutilized hardware in existing computers.

Custom hardware

Paracel, a company that also sold string-matching software to the NSA, formerly sold a custom, field-
programmable-gate-array (FPGA) based machine called the GeneMatcher. Paracel claimed Smith-Waterman
searches on a GeneMatcher could run hundreds of times faster than BLAST runs on standard hardware. TimeLogic
sells a BLAST acceleration board called the DeCypher compatible with SPARC-based systems from Sun
MicroSystems. TimeLogic claims speed-up as much as 1500x over BLAST on the same hardware without the
DeCypher board.

18

A Paracel GeneMatcher cost ~$200,000 and required a $50,000 annual service contract. The company was
purchased for $283 million in March 2000. Dollar-per-performance these solutions are cheaper than clusters of
x86 machines, but they can essentially solve only one problem, limiting their usefulness.

GPUs, SIMD instructions

Since the mid 1990's, most consumer CPUs have been equipped with SIMD instructions (with names like MMX,
SSE, Altivec), which perform multiple similar operations simultaneously. Usually these instructions must be called
explicitly in C-code or assembler. The SSEARCH implementation of Smith-Waterman incorporates these
instructions, claiming speedups of 6x-20x

19

Multiple labs have explored using GPUs (graphic processing chips) to speed up Smith-Waterman. Speed increases
have been claimed from 2-10x, depending on implementation and query size

2021

Parallelization

BLAST is an "embarrassingly parallel" algorithm. For the database-scanning phase, both the database and query
sequence can be divided into independent sub-problems (hit-extension and scoring are a little more intricate).
Newer versions of BLAST accept a command-line parameter specifying the number of processors to use.

Often, BLAST is run across many query sequences; this sort of workload is broken down and run on clusters of
commodity x86 hardware very naturally.

New algorithm: BLAT
A notable sequence alignment program that emerged in 2002 is called BLAT

22
 (an acronym for BLAST-Like

Alignment Tool). BLAST is can align any sort of biological sequence (genomic DNA, mRNA, protein) to a database

of any other sort of biological sequence. In contrast, BLAT is designed to use only genomic DNA as a database.

Where BLAST indexes its query sequence and scans linearly through its database, BLAT indexes its database and

scans linearly through its query sequence. BLAT stores a compressed version of its complete target genome in

18

 TimeLogic benchmarks: http://www.timelogic.com/benchmark_blast.html
19

 Farrar M (2007). "Striped Smith–Waterman speeds database searches six times over other SIMD
implementations". Bioinformatics 23: 156-161.
20

 Weiguo Liu, Bertil Schmidt, Gerrit Voss, Andre Schroder, and Wolfgang Muller-Wittig, 2006, Bio-Sequence Database Scanning

on a GPU

21
 The Joint Genome Institute has also explored this capability.

22
 Kent, W. James BLAT---The BLAST-Like Alignment Tool Genome Research 2002 12: 656-664

Hogg/Russell p9/9

main memory; this would have been impractical when BLAST was implemented in 1990. Because startup time can

be 10-15 minutes, BLAT typically runs as a "server" process. BLAT also approaches gaps differently, overcoming

BLAST's weakness in dealing with long gaps in alignments caused by splicing.

BLAT's performance is much better than BLAST's:

 Time in seconds (doesn't include
BLAT database initialization)

% of well-studied genes covered
by alignments

BLAT 50 80.8%

BLAST (WU-TBLASTX) 3700 81.7%
Table 5: Aligning 1000 mouse DNA sequences to human chromosome 22

Conclusion
Sequence similarity is a very important problem for biologists. Smith-Waterman and BLAST are two classic

algorithms for addressing the problem. Smith-Waterman is slower, but more precise, while BLAST uses a much

faster heuristic approach. Other approaches to the problem include hardware acceleration and special-purpose

algorithms.

