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Introduction 

Background 

The schematic for every living organism is stored in long molecules known as chromosomes made of a substance 

known as DNA  (deoxyribonucleic acid.  Each cell in an organism has a complete copy of its DNA, also known as its 

genomewhich is conveniently modeled as a sequence of symbols (alternately referred to as nucleotides or bases) in 

the DNA alphabet {A,C,T,G}. In humans, and most mammals, this sequence is about 3 billion bases long. 

Through a process known as protein synthesis, instructions in our DNA, known as genes, are interpreted by 

machinery in our bodies and transformed first into intermediate molecules called RNA, and then into structures 

called proteins, which are the primary actors in living systems.   These molecules can also be modeled as sequences 

of symbols. 

These genes determine core characteristics of the development of an  organism, as well as its day-to-day 

operations. For example, the Hox
1
 gene family determines where limbs and other body parts will grow in a 

developing fetus, and defects in the BRCA1 gene are implicated in 

breast cancer. 

The rate of data acquisition has been immense.  As of 2006, 

GenBank,  the national public repository for sequence 

information, had accumulated over 130 billion bases of DNA and 

RNA sequence, a 200-fold increase over the 1996 total
2
.   Over 

10,000 species have at least one sequence in GenBank, and 50 

species have at least 100,000 sequences
3
.   Complete genome 

sequences, each roughly 3-gigabases in size, are available for 

human, mouse, rat, dog, cat, cow, chicken, elephant, 

chimpanzee, as well as many non-mammals.  Technology 

continues to make sequencing (the process of determining 

sequences) cheaper; the first complete sequencing of the human 

genome cost $2.7 billion
4
, achieving the same for $10,000 is now 

on the horizon
5
. 

                                                                 
1
 Wikipedia article on Hox genes: http://en.wikipedia.org/wiki/Hox 

2
 Statistics from http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html  and 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide 
3
 dbEST summary: http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html 

4
 Human Genome Project FAQ http://www.genome.gov/11006943 

5
 The Archon X-prize: http://genomics.xprize.org/ (this is not an outlandish goal) 

http://genomics.xprize.org/
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Sequence Similarity – Why does it matter? 

One of the most common computational operations on sequences is a sequence similarity search.   A typical search 

compares one query sequence to a larger database of sequences and tries to find alignments between the query 

and database that reflect similarities between the two.   These searches are valuable to researchers because of the 

nature of evolution, and the nature of scientific research.   All known species, whether yeast, puffer-fish, mice, or 

humans appear to be related to each other (see Figure 1
6
, but it is more convenient to do scientific experiments on 

yeast or mice than on humans.   Researchers may be able to determine a gene in mouse which is responsible for a 

condition such as obesity; a sequence similarity search helps pinpoint the analogues of that gene in humans. 

Similarity searches are also used within a single species; portions of a gene, called domains, are often duplicated 

among several genes.   Finally, similarity searches allow researchers to infer which parts of our DNA are important.  

Relevant portions of our genome are less 

likely to have changed over time than less-

important regions.    A similarity search that 

detects regions in common between 

evolutionarily distant species has probably 

also detected very important genomic 

regions. 

In order to perform these kinds of 

sequence analysis several factors must be 

considered. These include how to score 

individual matches across sequences, 

whether to perform global or local searches, 

what type of algorithm to use and finally 

how to evaluate results to determine the 

statistical significance of an alignment score.  

We provide a high-level introduction to 

these processes with the goal being to 

simply to provide context for our detailed 

evaluation of the Smith-Waterman and 

BLAST algorithms.  A complete description of 

each of these processes can be found in 

papers written by their authors
8,11

. 

Scoring model 

When comparing sequences we are looking for evidence that portions of a sequence may be related even though 

mutations may have occurred between the sequences. DNA can change in one of two ways. The first type of 

change is called a substitution, whereby a base of one type is substituted for another type. The second type of 

change is based on gap, whereby an insertion or deletion of a base is made to the original sequence.  

                                                                 
6
 Kent, W.J., Sugnet, C. W., Furey, T. S., Roskin, K.M., Pringle, T. H., Zahler, A. M., and Haussler, D. The Human 

Genome Browser at UCSC. Genome Research 12(6), 996-1006 (2002). 
7
 http://en.wikipedia.org/wiki/BRCA1 

8
 Smith, T.F. and Waterman, M.S. 1981, Identification of common molecular subsequences, Jounal of Molecular 

Biology, 147:195-197 

Figure 1:  Similarity between human BRCA1 gene region and other 
species.  Green regions are similar.  

Figure 2a:  Zoomed-in view of highly similar area from above, each row 
of ACTG corresponds to one species.  

http://www.genome.org/cgi/content/abstract/12/6/996
http://www.genome.org/cgi/content/abstract/12/6/996
http://www.genome.org/cgi/content/abstract/12/6/996
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The most fundamental scoring mechanism for evaluating substitutions uses substitution matrices. A substitution 

matrix for DNA sequences establishes a score for each pair of bases encountered in two input sequences.  The 

score is positive if the bases are identical and usually negative if they are different.   Various models exist for 

establishing substitution matrices based on the type of data being analyzed. For our example, we'll use a subset of 

the default scoring matrix, illustrated in Table 1. 

Different approaches also exist for penalizing gaps in sequences. The first approach known as a linear score, simply 

applies a linear penalty of d based on the length of the gap. A second approach known as an affine score can be 

used to reduce the penalty burden where long insertions or deletions may occur.  

Alignment algorithms  

Alignment algorithms are used to determine the optimal alignment of a pair of sequences based on a particular 

scoring mechanism. Fundamentally, two different alignment problems exist. Global Alignment finds the best 

alignment from start to end of both sequences (with provision for gaps). Local Alignment is used to find 

subsequences of a sequence that have the best alignment 

The Needleman-Wunsch algorithm is a dynamic algorithm that can be used to analyze global alignments, and was 

covered in class. The Smith-Waterman algorithm modifies the Needleman-Wunsch algorithm to allow it to search 

for local alignments.  Local Alignment often works better for sequence similarity searches, because over the eons, 

stretches of DNA have been chopped up and re-arranged in ways that don’t make for good global alignments. 

Although these dynamic algorithms will find optimal matches, they are computationally expensive, especially for 

large datasets.  As such, heuristic algorithms such as BLAST have also been developed to reduce the computational 

burden on evaluations. We will discuss Smith-Waterman and BLAST in more detail in the rest of the paper. 

Significance of scores 

Having found an optimal alignment it is important to determine whether the alignment is statistically significant or 

whether the alignment is no more likely than we’d expect by random chance and uninteresting to a user. Two 

models exist for performing this analysis – a Bayesian approach and a statistical approach. Discussion of these 

algorithms is out of scope for this paper, however the importance for evaluating significance of scores is included 

simply to complete the discussion on the process by which analysis is performed.  

Smith-Waterman 

Motivation 
The Smith-Waterman algorithm is a dynamic algorithm that is used to find local alignments of a subsequence 

within a larger sequence. Dynamic algorithms are guaranteed to find the optimal scoring alignment but can be 

computationally resource intensive. Smith-Waterman is based on the Needleman-Wunsch
9
  algorithm which is 

used for obtaining optimal global alignment across pairs of sequences that may include gaps.  

Design of the algorithm 
As with all dynamic-programming algorithms Smith-Waterman  establishes an optimal overall solution using 

optimal solutions to smaller sub-problems – or in this case optimal alignments on smaller subsequences. The 

algorithm establishes an i * j matrix designated F, where i and j are the widths of the respective subsequence and 

sequence. As we will describe shortly, the completed matrix F can be searched for optimal alignments. 

                                                                 
9
 Needleman S.B. and Wunsch, C.D. 1970.   A general method applicable to the search for similarities in the amino 

acid sequence of two proteins.  Journal of Molecular Biology 48:443-453 
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For Smith-Waterman we start by initializing the following cells of F: 

- F(0,0) = 0  

- F(x, 0) = 0, where 0 <= x < i 

- F(0, y) = 0 , where 0 <= y < j 

The values for the remaining cells are calculated using the following recursive algorithm: 

𝐹 𝑖, 𝑗 = 𝑚𝑎𝑥

 
 

 
0,

𝐹 𝑖 − 1, 𝑗 − 1 + 𝑠 𝑥𝑖 ,𝑦𝑖 ,

𝐹 𝑖 − 1, 𝑗 − 𝑑,

𝐹 𝑖, 𝑗 − 1 − 𝑑.

  

The score  𝑠 𝑥𝑖 ,𝑦𝑖  is found using a substitution matrix as mentioned briefly earlier. A substitution matrix 

establishes a log-odds ratio providing a score for the alignment between two bases across sequences. A better 

alignment will have a higher score than a lower alignment.  

The value for d is based on the approach used for gap penalization. Two approaches exist. The first approach is to 

use a linear score in which a penalty g is simply multiplied by the size of the gap d.  

𝛾 𝑔 =  −𝑔𝑑 

A second approach is based on an affine score which reduces the penalty burden where long insertions or 

deletions may occur in one of the sequences.  

𝛾 𝑔 =  −𝑑 −  𝑔 − 1 𝑒 

After we have evaluated each of the four equations for each cell F(i, j) we take the maximum value and assign that 

to F(i, j). Where a cell contains a non-zero record we also include a pointer to the cell that represents the sub-

problem (either {(i-1, j-1) (i-1, j) (i, j-1)} that served as the basis for this problem. This pointer is used to support 

back tracking which is used as the basis for establishing the optimal sub-sequence. 

Once the matrix F is complete we then search the entire matrix F(i, j) for the highest value. This marks the start of 

our optimal alignment. At this point we must back track through the matrix following the pointers established 

earlier - until we find a zero score which marks the end of the optimal sequence.  

Complexity Analysis 
The Smith-Waterman algorithm requires the establishment of a matrix of size n * m, where n and m are the length 

of the query and target sequences.  Each cell within F requires the comparison for maximum value of 4 values 

which are calculated in constant time.  After the m*n matrix is populated, Smith-Waterman searches the matrix 

looking for the highest value and then constructs the optimal alignment.  As such the algorithm requires O(nm) 

time and O(nm) memory.   Some of the literature makes the assumption that n and m are roughly the same, 

simplifying the complexity to O(n
2
).   This is reasonable for most comparisons of protein sequences, but this isn’t 

always appropriate;  the typical size of a gene is orders of magnitude smaller than the genome. For example the 

BRCA1
7
 gene is about 80,000 bases long, much shorter than the 3-gigabase human genome. 

Example 
In this example we will show how Smith-Waterman would search for the best local alignment between the 

sequences  GACTAC  and CTA.  
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We will use a subset of the default scoring matrix that is used by the FASTA algorithm 

package (weizmann). The subset focuses only on the bases {A, C, G, T}  (the FASTA 

package also includes “incomplete” symbols in its scoring matrix, for instance an R 

corresponds to either A or G
10

).  . FASTA includes multiple programs, including 

SSEARCH which is an implementation of the Smith-Waterman package. For the sake of 

simplicity, we will also assume a linear gap penalizing value of g=1. 

Table 2 - F(i, j) values 

Values 

F(i,j) are included inside Table 2. Cell 

references are included where F(I,j) 

is based on the value from another 

cell. The values in bold/red indicate 

the values found after locating the 

maximum score, 15 at cell (3,5).  

Arrows illustrate back-tracking and 

the optimal local alignment of the 

sequence CTA within the sequence 

GACTAC. 

 

 

BLAST 

Motivation 
While Smith-Waterman produces optimal results, its O(MN) running time can be exorbitant.  BLAST, an acronym 
for Basic Local Alignment Search Tool, was built with this in mind

11
.   BLAST uses a heuristic approach.  It will find 

most of the results that an optimal approach finds, but in an order of magnitude less time.   However, this comes 
at a cost; BLAST will miss a small fraction of the results found by optimal algorithms. 

12
 

Algorithm Design 
The BLAST approach is to find short, but very high-similarity "seed" matches between a query and database 

sequence, following this with an extension of these matches into less similar regions, until it finds a maximal 

segment pair (MSP), which BLAST defines as "the highest scoring pair of idneticcal length segments chosen from 

                                                                 
10

Nomenclature for Incompletely Specified Bases in Nucleic Acid Sequences 

http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html#302 
11

 Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990.   Basic local alignment search tool.  Journal 
of Moleculary Biology 215:403-410 
12

 E.g.   a comparison that scientists might be interested in is comparing a single mRNA sequence about 10,000 
base-pairs in length to the complete collection of "EST" sequences of about 20 million members, each 500 bases in 
length.  Smith-Waterman on these inputs could result in something approaching 10

13
 matrix cell comparisons.  A 

single search like this could take hours or days to complete 

 A C G T 

A 5 -4 -4 -4 

C -4 5 -4 -4 

G -4 -4 5 -4 

T -4 -4 -4 5 

Table 1: Scoring matrix used in 
our example 

F(i, j) 0 1 (C) 2 (T) 3 (A) 

0 0 0 0 0 

1  (G) 0 0 0 0 

2  (A) 0 0 0 5 

3  (C) 0 5 0 4 (3,2) 

4  (T) 0 4 (1,3) 10 (1,4) 9 (2,4) 

5  (A) 0 2 (1,4) 9 (2,4) 15 (2,4) 

6  (C) 0 5 7 (2,5) 14 (3,5) 
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two sequences".    The key insight behind the design of BLAST is that most statistically significant hits -- hits that a 

user might be interested in -- will have at least one high-quality short "seed" match. 

Breaking query sequence into "words" 

A typical
13

 BLAST run first divides a DNA input sequence contiguous "words" of length w (12  has been empirically 
determined as a good value for w).  An n letter sequence will be broken into n - w + 1 words: 

   AATTGGACTGATTAAGGT....    

            is broken into the following words: 

   AATTGGACTGAT 

     ATTGGACTGATT 

     TTGGACTGATTA 

      TGGACTGATTAA 

           (etc) 

With w=12, and 4 symbols in the DNA alphabet, we can map each of the possible 4
12 

(16,777,216)
 
words to an 

integer.   This integer can be used as an index into a table with pointers into the query sequence where the query 

sequence contains the words.   In practice, for a given query many of these 12-mers won't occur at all; so the table 

is actually much smaller.
14

  

Scanning the database for hits 

Once the table of query words is assembled, BLAST scans its database linearly for matches to these query words.    
Compression of the DNA alphabet to two bits per symbol is straightforward (A=00, C=01, etc.).   Using this scheme, 
the BLAST database represents eight bases using only two bytes of memory.   With w=12, each hit must contain at 
least one eight-letter hit aligned to a byte boundary.   Comparison to words on boundaries can usually be 
performed much faster than non-aligned comparisons which require additional shift operations, so BLAST only 
compares database sequences aligned to byte boundaries to the query words. 

BLAST's authors also describe a finite-state machine approach to database scanning, which we've skipped for 

simplicity.
15

 

Filtering uninformative words 

Some words appear in so many regions that they add little information but can trigger BLAST to begin many slow 

extension steps that don't produce interesting results.   An example is the "repeat" sequence ATATATAT which 

appears tens of thousands of times throughout the genome.   The program that prepares sequence databases for 

BLAST tabulates the frequency of 8-letter words, and creates a list of "uninformative" words that are used to filter 

portions of the query sequences. 

Hit extension and scoring 

For each "hit" BLAST finds, between the query and database, BLAST uses a dynamic programming approach to 

extend the hit in both directions.   The extension terminates when reaching a score that falls more than some 

distance below the best score among all shorter extensions.   This extension process can be slow, especially if 

many hits are found, but has the advantage of allowing "gaps" in the alignments.   Based on the length, number of 

                                                                 
13

 This varies for protein sequence comparisons.   Proteins are broken into (n-w) words (typically, w=4).   Each of 
these then balloon into the ~50 w-letter words that, if found in the database, would match the query word with 
score better than some threshold. 
14

 The authors don't describe how; a simple technique like taking the mod of the integer will suffice. 
15

 BLAST apparently uses the 2
nd

 of these, but the authors don't describe it in any significant detail.   They reference 
Hopcroft and Ullman, '79, Introduction to Automata Theory, Languages and Computation p42-45 
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mismatches, and number and size of gaps in the final alignment, BLAST assigns an "expect" value to the hit, 

expressing how many similar scoring hits BLAST would expect to find with similar sized inputs by random chance. 

Complexity 

We were unable to find published time-complexities for BLAST.   With a moderate sized query sequence, scanning 

a database of size n happens in O(n) time, but each hit then triggers a potentially expensive extension phase.   

Because BLAST is intended to improve results in practice, looking at running-time from real world results (below) 

may be more relevant than worst-case style analysis. 

Comparing Smith-Waterman and BLAST 

Speed 

A primary goal in the design of BLAST is performance, and it succeeds with flying colors.  For typical inputs, BLAST 
is an order of magnitude faster than Smith-Waterman

17
 (see Table 3 below).   This increase in performance is 

especially important when searching large bodies of data. For example, searching the 3-billion base human genome 

for the 80-thousand base BRCA1 gene that we mentioned earlier with Smith-Waterman would build a matrix with 

over 200 trillion cells.  

Table 3: Library Search Times
16

 

Computer BLASTP Smith Waterman 

DEC Alpha 2100 0.5 min 10.1 min 

Sun Sparc10 1.6 min 55.7 min 

Times given for a search using the OPSD_HUMAN protein as query and SWISS-PROT release 31 (43,470 sequences) 
as the database. 

Quality of Results 

BLAST and Smith-Waterman results, when compared to a respected "gold standard", are roughly similar.  BLAST 

found 379 of the proteins acknowledged by scientists to be related to the protein OPSD_HUMAN, while Smith-

Waterman found 394.   From a user's point of view, this tradeoff is a no-brainer– BLAST speeds up their work 20-

fold without much degradation of results
17

 

Table 4: Algorithm Seach Sensitivity 

Protein BLASTP Smith-Waterman 

OPSD_HUMAN 379 394 

GTB1_MOUSE 66 63 
(Numbers of known family members with expectation < 2.0) 

BLAST Drawbacks 

Because it requires exact matches over a certain length, BLAST typically misses some results.   Most researchers 
don't mind the difference, but some consider these differences quite seriously.   When similarities are very weak, 
such as between very distantly related species, BLAST may miss a larger portion of results.   BLAST is much faster 
than Smith-Waterman, but still slower than a researcher would like.   Though BLAST finds alignments with short 
gaps, it terminates when gaps get large.   Because of a phenomenon called "splicing", long gaps are actually very 
common, causing BLAST to generate many small results rather than long "stitched together" results. 

                                                                 
 
17

 Pearson W.R. 1996,  Effective protein sequence comparison. Methods in Enzymology Vol 266: 277-258  More 
detailed studies have also been performed showing similar trends. 
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Further work 

Since BLAST's release in 1990, sequence similarity work has continued.   One path has been hardware acceleration 
(or exploitation).   Another has been development of specialized algorithms that are faster or better than BLAST for 
specific problems. 

Hardware acceleration/exploitation 
Multiple companies have tried to improve sequence similarity performance with either custom hardware or 
making better use of underutilized hardware in existing computers.  

Custom hardware 

Paracel, a company that also sold string-matching software to the NSA, formerly sold a custom, field-
programmable-gate-array (FPGA) based machine called the GeneMatcher.    Paracel claimed Smith-Waterman 
searches on a GeneMatcher could run hundreds of times faster than BLAST runs on standard hardware.  TimeLogic 
sells a BLAST acceleration board called the DeCypher compatible with SPARC-based systems from Sun 
MicroSystems.   TimeLogic claims speed-up as much as 1500x over BLAST on the same hardware without the 
DeCypher board.

18
 

A Paracel GeneMatcher cost ~$200,000 and required a $50,000 annual service contract.   The company was 
purchased for $283 million in March 2000.  Dollar-per-performance these solutions are cheaper than clusters of 
x86 machines, but they can essentially solve only one problem, limiting their usefulness. 

GPUs, SIMD instructions 

Since the mid 1990's, most consumer CPUs have been equipped with SIMD instructions (with names like MMX, 
SSE, Altivec), which perform multiple similar operations simultaneously.  Usually these instructions must be called 
explicitly in C-code or assembler.   The SSEARCH implementation of Smith-Waterman incorporates these 
instructions, claiming speedups of 6x-20x

19
 

Multiple labs have explored using GPUs (graphic processing chips) to speed up Smith-Waterman.   Speed increases 
have been claimed from 2-10x, depending on implementation and query size

2021
 

Parallelization 

BLAST is an "embarrassingly parallel" algorithm.   For the database-scanning phase, both the database and query 
sequence can be divided into independent sub-problems (hit-extension and scoring are a little more intricate).  
Newer versions of BLAST accept a command-line parameter specifying the number of processors to use. 

Often, BLAST is run across many query sequences; this sort of workload is broken down and run on clusters of 
commodity x86 hardware very naturally. 

New algorithm: BLAT 
A notable sequence alignment program that emerged in 2002 is called BLAT

22
 (an acronym for BLAST-Like 

Alignment Tool).   BLAST is can align any sort of biological sequence (genomic DNA, mRNA, protein) to a database 

of any other sort of biological sequence.   In contrast, BLAT is designed to use only genomic DNA as a database.   

Where BLAST indexes its query sequence and scans linearly through its database, BLAT indexes its database and 

scans linearly through its query sequence.  BLAT stores a compressed version of its complete target genome in 

                                                                 
18

 TimeLogic benchmarks:  http://www.timelogic.com/benchmark_blast.html 
19

 Farrar M (2007). "Striped Smith–Waterman speeds database searches six times over other SIMD 
implementations". Bioinformatics 23: 156-161.  
20

 Weiguo Liu, Bertil Schmidt, Gerrit Voss, Andre Schroder, and Wolfgang Muller-Wittig, 2006, Bio-Sequence Database Scanning 

on a GPU 

21
 The Joint Genome Institute has also explored this capability. 

22
 Kent, W. James BLAT---The BLAST-Like Alignment Tool Genome Research 2002 12: 656-664 
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main memory; this would have been impractical when BLAST was implemented in 1990.   Because startup time can 

be 10-15 minutes, BLAT typically runs as a "server" process.   BLAT also approaches gaps differently, overcoming 

BLAST's weakness in dealing with long gaps in alignments caused by splicing. 

BLAT's performance is much better than BLAST's: 

 Time in seconds (doesn't include 
BLAT database initialization) 

% of well-studied genes covered 
by alignments 

BLAT 50 80.8% 

BLAST (WU-TBLASTX) 3700 81.7% 
Table 5:  Aligning 1000 mouse DNA sequences to human chromosome 22 

Conclusion 
Sequence similarity is a very important problem for biologists.   Smith-Waterman and BLAST are two classic 

algorithms for addressing the problem.   Smith-Waterman is slower, but more precise, while BLAST uses a much 

faster heuristic approach.   Other approaches to the problem include hardware acceleration and special-purpose 

algorithms. 


