
Gokul Thirumalai, CSEP 521 Project

Page 1 of 6

Capacity Planning in Distributed Systems using Network Flow

One of the key challenges in building a scalable, distributed system is determining the capacity of the

system and ascertaining cheap and efficient ways of increasing this capacity. At FlexGo

(http://www.microsoft.com/flexgo), we build a scalable message-based distributed system in the cloud

that clients and partners can connect to and work with. The taxonomy “client” and “partner” is used to

differentiate the type of message incoming from a source, and can be generalized to supporting n

incoming sources, each with possibly m distinct messages.

The necessity for assessing and analyzing the capacity of the system is justified by the following two

reasons— determining where the bottlenecks in the system are, and providing a guarantee for service

level agreements (SLA’s). Knowledge of the bottlenecks in the system helps with determining efficient

ways to scale-out and address these bottlenecks. While this may seem obvious as just looking for the

node with the lowest capacity in the system, it’s not as easy when the system looks like an

interconnected graph. SLA’s help clients/partners set expectations on how many messages they can

send into the system with some guarantee of

serviceability within a time interval. This can also be

translated into the overall service time for each

message at a specified current workload, but we will

stick to the former for simplicity.

A simple depiction of this problem is provided in figure

1. There are N sources, each of which is capable of

providing mN (possibly distinct) requests into the

system. The goal is to provide some guarantee to each

of the sources that the system can process at least mk

messages from each source, assuming they all provide mk and no more than mk sources.

The easy solution to the problem that is done a lot in practice is to just test the real distributed system

and look at the results. But this paper explores the use of network flow and graphs to come up with an

alternate method.

The first step is to represent the distributed system as a graph. Internally,

the distributed system is just a collection of services communicating

through messages. This service-level framework can be represented as a

graph with the nodes being the services, and the edges connecting

services that pass messages between each other.

 Perhaps a more accurate model is to represent this system as a

topological (network) layout of the services, where the nodes correspond

to physical units hosting each service and the edges still connect to

services that communicate with each other. This model allows us to

Source 1,

Target 1

Source 2,

Target 2 N sources

Server System

Cloud

m
1

m
2

Figure 1

S1 S3

S2

c1 c2

S2 S3

S21

(c1)/2

S22

(c1)/2

(c2)/2

Figure 2

http://www.microsoft.com/flexgo

Gokul Thirumalai, CSEP 521 Project

Page 2 of 6

factor in articulation points, where if one physical unit fails, the flow of messages through this graph is

affected. Figure 2 depicts this difference. The top model is where S2 is internally managed as several

machines with total capacity c1. The bottom model shows S2 being represented as actual physical

machines with each having half the capacity of the top one. If S21 dies, the capacity of S2 is now half of

what it used to be.

It is hard to formalize and analyze a model without looking at the requirements around goals and

constraints of a specific system. We will look at those surrounding FlexGo’s server system and choose

that for analysis.

Goals of the Model
The final model should achieve the following goals:

1. Allow us to set expectations on servicing requests from various sources- specifically in terms of

how many we can process within a “reasonable” amount of time.

2. Allow us to figure out where the bottlenecks in the system are, and where to scale to increase

the overall capacity of the system.

3. Do all of the above in a cheap and efficient manner relative to brute force (deploying the full

system, and actually doing empirical tests).

Constraints surrounding the Model
The model should satisfy the following constraints:

1. The system internally only understands messages. For the purpose of this model, it does not

understand the sources. Each incoming request into the system is translated into a single

message as it makes its way across the system.

2. Each service in the system has a specific service time for a specific message on a specific

hardware. When the service is online, each service has a limit on the number of messages of a

particular type it can process per second before the messages start queuing up and eventually

“overflow” the service. This should not happen when all the sources are acting within their

SLA’s.

3. The service time for the same message may vary based on the service.

Constructing a Simple Model – Model 1
Let us start with the simple model where the services are nodes and the edges connect services that

communicate with each other. A first cut at the real system today looks like the following:

Gokul Thirumalai, CSEP 521 Project

Page 3 of 6

CD PD DTRS

C1oi

SCS TC

QS RS

C

FUI

CDB

G
BR

Q
BRP

DW

RP

SS

PDB

E

K
DDB TDB

Poi Foi

T

C2oi

Explanation of Model 1
1. This is a multi-commodity flow network.

2. The top row of nodes are all sources as well as sinks. These are the clients and partners.

3. The messages out of each source are all considered to be equivalent messages from a single

commodity.

4. The arrowheads only indicate who initiates the communication. While asynchronous message-

based communications are correctly represented, this means synchronous communications are

also represented this way.

5. Each edge is assigned a capacity (per commodity) of total requests it can take, this can be

calculated since the node (service) at the end of the directed edge has a certain capacity.

6. If we assume all the edges going out of the source have infinite capacity, then we can assess the

max-flow using Network Flow algorithms to figure out what the SLA’s are.

7. The min-cut will reveal the bottlenecks within with the flow network.

Limitations of Model 1
Here are some immediate observations on the above model:

1. The top row of nodes are all sources as well as sinks, there should be no other sources/sinks

within the system. However, only some of them have arrowheads pointing back to them. This

explains some difficulties in describing asynchronous messaging vs. Synchronous messaging.

This is also true for several nodes within the system.

2. Several of the constraints are not taken into account, including:

a. The translation between requests and messages is unclear. If they map 1-1, it violates

the constraint that states that all messages are not necessary equivalent.

Gokul Thirumalai, CSEP 521 Project

Page 4 of 6

3. Capacity of the edges is defined per commodity. But the internal system cares only about the

messages, not about the commodity. It is unclear how this capacity is measured and how to

translate it to the internal system.

Improving on Model 1— Model 2

Synchronous vs. Asynchronous Depiction

One of the primary limitations in Model 1 was the depiction of synchronous communications. They are

currently represented as one-way directional edges. This introduces problems because this source is

also the sink for that request. This however is solved by adding another edge with the same capacity

from the target node back to the source.

Commodities, Messages and Capacities

Another primary limitation is the commodity-message relationship does not clearly aid in defining actual

capacities. For example: If we have a client sending a message, and a partner sending a message of the

same type, these messages are actually equivalent in the system. This is because the capacity for the

service is not defined per commodity, but rather per message.

The solution to this is to define intermediate nodes that depict messages between the source and the

system. This way, the capacity in the system is still accurately defined per message, and these

intermediate nodes take care of the mapping.

One problem that hasn’t yet been discussed is how to compute the capacities of each edge. In reality,

these edge capacities are actually defined by the target node, so all edges ending at a target node have

the same capacity. This capacity is simply computed by measuring the service time of a single message

at that service. If at a particular service we know that a message takes a processing time of t, the

capacity of the service is 1/t per second for that specific message.

Constructing Model 2

Instead of working on the real problem

which is fairly complex, let us analyze the

changes on an example problem that is

representative of the primary problem.

Explanation of Model 2
1. There are 3 tiers. At the top is

the source/sink tier. The middle

is the message tier, and the

bottom is the service tier.

2. For each service, let us normalize

all the messages on a baseline

Message 0. This way, all

Sync

Source/

Sink

Async

Source/

Sink

(T1)

Async

Source/

Sink

(T2)

Msg 1 Msg 3 Msg 4

8 8 8 88 8

8

S2

S4

(Sync)
S3

S1

C
0(S

1)

C
0 (S

3)

C0(S4)

C 0
(S

2
)

C
0
(S

1
)

C
0
(T

1
 +

 T
2
)

C
0 (S

1)

C0(S4)

8

Msg 0

(Baselin

e)

Figure 4

Gokul Thirumalai, CSEP 521 Project

Page 5 of 6

messages are normalized down to a single baseline message’s processing time, and each

service’s capacity is represented as the capacity for processing the baseline message. If message

1 takes a processing time of t1, we normalize such that the capacity of node S1 for message 1 is

actually is C0(S1) which is nothing but 1/t0. Hence the capacity of the edge connecting the

message 1 to the service node is t1/t0 * C0(S1). This addresses the limitation of having the model

represent everything in terms of message capacities, regardless of the source.

3. As a direct result of the above, this is now a single-commodity flow network. the commodity is

message 0.

4. Also, as discussed earlier, synchronous calls are represented with an additional backward edge

between the target and the source with the same capacity. This ensures that the source/sink

relationship for that source is presented accurately.

5. Similar to Model 1, the max flow represents the SLA that can be guaranteed per partner/client.

6. Also similar to Model 1, the min-cut represents the first bottleneck in the system. In fact,

anywhere that the flow = capacity is a bottleneck.

Open Challenges not addressed by Model 2
1. There is an assumption in normalizing that when 2 two dissimilar messages m1 & m2 are

processed with each service time t1 and t2, the final time when both are done is t1 + t2.

Sometimes, processing a single message may have some adverse effects on another message

(like taking a global lock). This doesn’t fit into the above model.

2. There are current implementations in the real system that split up the messages in a single

service. This means a single message from the source can no longer be tracked as a single

message. It’s not clear how to fit this into the above model.

Complexity
Calculating the network flow once the model has been setup is straightforward by just application of the

Ford-Faulkerson algorithm. However, setting up the problem involves additional layers of complexity

including actually measuring the service time for each message time each service- O(nC) where n is the

number of services and C is the number of messages. In the case of the current system in question, it’s

practically O(n2).

Applications
While the key applications are as suggested by the goals- SLA’s and determining where to scale, this is

primarily an offline algorithm. Additional applications exist if this is made online, such as a single backup

machine can serve two different services based on the current computation of the bottleneck.

Alternate Approaches
Most solutions to this problem today are determined empirically- the existing infrastructure is tested for

a certain load, and additional resources are added to address the current pressing problem. In practice,

this works well most of the time. But the relative demerits when compared with the solution in this

paper are obvious: the costs associated with testing a full scale-out, the surprises involved when actually

hitting the limits etc. The demerits of the current solution include having to characterize each service ’s

Gokul Thirumalai, CSEP 521 Project

Page 6 of 6

processing time per message, and each of the open challenges listed above (dependent on good

programming practices, also works only with certain implementations).

Concluding Remarks
The fundamental problem is analyzing the capacity of a complicated distributed system. Testing the real

distributed system for various outcomes can be a complex process. Instead, utilizing network flow, it is

fairly simple to characterize each service and construct the full model for the system.

