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Simulated Annealing and its use in the Identikit Software 

 

 In an effort to learn more about the universe and its origin, radio astronomers 

must observe the behavior of galaxies and their interaction with one another.  One of the 

difficulties in this study is that galaxies evolve over billions of years.  For this reason, it is 

beneficial for astronomers to use astrophysics simulations to predict galactic evolution.  It 

is difficult to simulate galaxies because of the complexity of these systems, as well as the 

enormity of the data sets involved.  Dr. John Hibbard, from the National Radio 

Astronomy Observatory (NRAO), a partner of the University of Virginia Department of 

Astronomy, worked on a computer simulation program, Identikit, to model galaxies.  My 

undergraduate thesis focused on improving the Identikit software by providing a method 

to automatically match the simulation data set to the observational data set using 

simulated annealing.    

 

Identikit 

 Dr. Hibbard's project, Identikit, is a visualization tool to match simulations of 

interacting galaxies to observational data of these systems. The project works with 

simulation data in seven dimensions; x, y, and z, the velocities of x, y, and z (Vx, Vy, and 

Vz), and time.  Identikit also uses observational data in three dimensions, x, y, and Vz 

since these are the dimensions that astronomers can observe from Earth (x and y planar 

position and velocity orthogonal to Earth using the Doppler effect).  This simulator plots 

the observational and model data in four of these orthogonal planes, (x, y), (x, Vz), (y, 

Vz), and (x, z).  There are various menu items and keyboard commands to rotate and 

scale the data until the observational data and the model is best matched in all four 

planes, which are displayed to the user.   

 Before my project, the Identikit user had to manually manipulate the parameters 

until it appeared that the user had the best fit.  For my thesis project, I implemented the 

optimization algorithm to automatically change these parameters to produce an optimal 

fit.    

 

Optimization Function 

To quantify the “fit” of two data sets, I decided to use a method of least squares, 

where the goodness-of-fit is quantitatively determined by using the squares of the sums 

of the distances between the points in each direction.  The fit of two data sets are 

determined quantitatively by summing the squares of the distances from each simulation 

point to the closest observational point in each dimension.  For each point in the 

simulation data set, the algorithm will find the point closest to it and calculate the 

differences in the x, y, and vz directions, since these are the three dimensions in the 

observational data.  These differences are squared then summed to determine the fit of a 

point.  The quantitative matching value is the average of the sum of the squares from all 



the points.  The time to do this matching increases linearly, O(n), with respect to the 

number of points which I verified through experimentation. 

 

Optimization Algorithm 

The goal of my project was to determine the values of the variables, such as x, y, 

and z rotation, which produce an optimal solution.   In the case of this project, the optimal 

solution is where the variables produce simulation data that most closely matches the 

observational data.   

 One approach to solving optimization problems is using simulated annealing.  

This name originated in the annealing process in thermodynamics.  Annealing is a 

process used in the fabrication of objects constructed of metal or glass.  It corrects a 

defect caused when metal or glass is shaped and become prone to fracture (McLaughlin).  

Simulated annealing uses the principles of annealing to produce an optimal solution to a 

problem.  

The process of simulated annealing begins with a possible solution randomly 

selected as a starting point.  Then a new solution, or configuration, is created at random.  

If this solution is better than the previous, this solution is kept.  If it is worse, it is kept 

with a probability related to the Boltzmann distribution.  This probability is e 
(value of worse 

solution – value of best solution)/T
.   

T is the “temperature” variable that decreases in time, similar to how a hot 

temperature will decrease in time (during annealing). Another way to think of T is how 

much worse a solution can be and still be considered.  As time progresses, this value will 

decrease.  In other words, a solution will have to be closer to the current best solution in 

order to be considered.  Since T is decreasing, the probability of accepting a worse 

solution will decrease over time, as the solution becomes closer to optimum. 

(McLaughlin)  It will run as long as T is larger than some minimum T value.  If T is set to 

infinity and the algorithm is run forever, the optimum solution will result.  The 

implementer of this algorithm can change the T and minimum T values to allow the 

function to run a less amount of time or longer depending on the needs. 

 

Implementation 

There were several steps involved in implementing this algorithm.  I had to 

integrate the optimization function with simulated annealing and set up the data structures 

to store the necessary information.  The following are the steps in the simulated annealing 

algorithm: 

- The T variable is determined with a GetT function which returns two standard 

deviations of the distribution of 100 random solution's match value.  Two standard 

deviations is the common value used for T in simulated annealing. 



o  I tried larger numbers of random solutions on the same data sets and the results 

were very similar, so I decided that 100 random solutions would be the best for 

the amount of time it took to execute.   

- The minimum T value is set to some proportion of the original T.  I added a 

parameter so the user can decide how long the algorithm should run.  The longer the 

algorithm runs, the better the solution. 

- Until T is less than the minimum T, a "for loop" is executed.  This loop is executed 

360*log360 times.  This loop is the essence of the algorithm.   

o A random parameter is selected.  Originally, the parameters include the x, y, and z 

rotation.   

o After the parameter is chosen, the value is changed to a random value.   

o If the match value of the new simulation data is less than the current data, it 

becomes the new current data.   

o If not, it is kept as the new current with a probability related to the Boltzmann 

constant.   

o If it is better than the best value obtained so far, it is also the new best value.   

o After the for loop finishes execution, T is multiplied by 0.9 and if it is still greater 

than the minimum T, the while loop is executed again.  At the end of the 

algorithm, the simulation datalist is set to the best datalist.   

 

In the implementation, the current best solution and current solution have to be 

stored.  I created a structure called a move that contained an axis name and an amount, 

such as 85 and x for 85º about the x-axis.  In order to optimize the space needed to store 

the data structures, I created a stack of these moves instead of storing both the current 

particle positions and the optimal particle positions.  Each move needed to be saved 

because the order of the moves determines the data positioning.  Every time I accepted a 

new current datalist, I added the move to the stack.  If a new solution became the new 

best solution, I cleared all of the moves from the stack.  At the end, I undid the moves in 

reverse order, the most recent first, to obtain the best solution.   

From the debugging process and knowledge of simulated annealing, I discovered 

that the longer the algorithm runs, the better the fit.  Therefore, I decided to add a 

parameter, called length, to the annealing function.  This parameter, a floating-point 

number between 1 and 10, determines how long the algorithm will run.  The minimum T 

value is determined from this length. 

The following is pseudo code for the simulated annealing algorithm: 

 
Annealing(datalist observationData, datalist simulationData, length) 

   set BestMoves = empty  // will be a stack of moves to get back   

     // to the current optimal configuration  

     

   set t = GetT(observationData, simulationData) 

   set mint = (0.99 - ((length-1) / 10)) *t 



     

   set thismatch = match(observationData, simulationData)     

   set currentbestmatch = thismatch; 

   set currentmatch = thismatch; 

 

   while ( t > mint) 

      for (i = 0; i < n*log(n); ++i) 

           set parameter = random integer from 0 to 2 

        set degrees = random number from 0 to 360 

 

        switch (parameter)  

         case 0:  

rotateanneal( degrees, 'x', 

simulationData) 

         case 1:  

rotateanneal( degrees, 'y', 

simulationData) 

         case 2: 

rotateanneal( degrees, 'z', 

simulationData) 

      

        thismatch = match(observationData, simulationData) 

 

        // if new match is better than the current match, 

// set the current match to this match 

        if (thismatch <= currentmatch) 

    currentmatch = thismatch 

 

    // if this match is better than the best match, 

       // set the best match to this match and reset 

       // the best move list  

    if (thismatch <= currentbestmatch)  

       empty the BestMoves list 

       currentbestmatch = thismatch 

  

 

    // if this match isn't better than the best  

    // match, add the move to the list of moves  

    // since the best match  

    else  

       Add this move to BestMoves 

       

 

        // if this match isn't better than the current match, 

    // accept with probability of Boltzmann constant 

        else  

    set delta = currentmatch - thismatch 

    set boltzman = e(delta/t) 

    randomprob = random number from 0 to 1 

 

    if (randomprob < boltzman)  

     Add this move to BestMoves 

 

    else  

     set the data positions to the previous  

positions 

    



     t = t*0.9 

 

   PutBackBestConfiguratino(simulatedData, BestMoves) 

 

 

// GetT takes two datalists as parameters, finds 100  

// random solutions, and returns two standard 

// deviations of the distribution of solutions  

GetT(datalist observationData, datalist simulatedData)  

 set tlist = empty // stores a list of moves  

 set values = empty // stores list of random values from 0-360 

 set sum = 0 

   // find 100 random solutions  

   for (i = 0; i < 100; ++i)  

      for (j = 0; j < 3; ++j)  

        values[j] = random number from 0 to 360     

       rotateanneal( values[0], 'x', simulatedData) 

       add move('x', values[0]) to tlist 

       rotateanneal( values[0], 'y', simulatedData) 

       add move('y', values[0]) to tlist 

       rotateanneal( values[0], 'z', simulatedData) 

       add move('z', values[0]) to tlist 

      results[i] = match(observationData, simulatedData) 

sum = sum + results[i]; 

 

   set mean = sum / 100 

    

// calculate variance  

set variance = 0 

   for (i = 0; i < 100; ++i)  

      variance += (results[i] - mean)*(results[i] - mean) 

  

   // calculate standard deviation  

   set standarddeviation =  var / (num −  1) 
 

   return (2*standarddeviation) 

 

 

rotateanneal(angle, axis, datalist s)    

   set radians=angle/deg_per_rad 

   foreach point in s 

      set X = point.x 

      set Y = point.y 

      set Z = pointz 

      set VX = point.vx 

      set VY = point.vy 

      set VZ = point.vz 

 

      if(axis=='x')       

point.y=Y*cos(radians)+Z*sin(radians) 

        point.z=-Y*sin(radians)+Z*cos(radians) 

        point.vy=VY*cos(radians)+VZ*sin(radians) 

        point.vz=-VY*sin(radians)+VZ*cos(radians) 

      else if(axis=='y') 

        point.z=Z*cos(radians)+X*sin(radians) 

        point.x=-Z*sin(radians)+X*cos(radians) 



        point.vz=VZ*cos(radians)+VX*sin(radians) 

        point.vx=-VZ*sin(radians)+VX*cos(radians) 

      else if (axis=='z') 

        point.x=X*cos(radians)+Y*sin(radians) 

        point.y=-X*sin(radians)+Y*cos(radians) 

        point.vx=VX*cos(radians)+VY*sin(radians) 

        point.vy=-VX*sin(radians)+VY*cos(radians) 

 

PutBackBestConfiguration(datalist a, movelist moves) 

 for each move in moves 

         rotateanneal(-move.angle, move.axis, a) 

 
match(datalist simulatedData, datalist observationData) 

 set sum = 0 

 foreach particle p in observationData 

  sum = sum + minrms(p, observationData) 

 return sum/(number of particles in observationData) 

  

minrms(particle p, datalist a)  

 set min = rms(first particle in a, p) 

 foreach particle q in a 

  if (rms(q, p) < min) 

   min = rms(q, p) 

 return min 

 

rms(struct particle a, particle b)  

 return (a.x – b.x)2 + (a.y – b.y)2 + (a.vz – b.vz)2 

 

Integration into Identikit 

 I integrated the optimization algorithm into the previous Identikit software so the 

user can now press a button on the GUI, called Find Best Fit, and a dialog box appears.  

The user enters a floating point number between one and ten to tell the simulated 

annealing algorithm how long to run.  This way, if the user does not have much time, 

they can get an estimated best fit in a few minutes.  If time is not as much a constraint, 

such as letting the program run overnight, or the user has a faster computer, he can allow 

the algorithm to run for a longer time and produce a better fit.  Figure 1 shows the new 

GUI before the user pushes the Find Best Fit button.   



 
Figure 1. New Identikit GUI, before Find Best Fit is Pressed 

 

On the right, the four planes, (x, y), (x, z), (Vz, Y), and (x, Vz), are displayed.  In 

these planes, the green points are the observational data and the blue and red points are 

the simulation data.  The goal of the user is to best match these data sets to each other.  

He can do this my manually modifying the parameters on the left or he can push the Find 

Best Fit button.  Figure 2 shows the results after the user presses the Find Best Fit button 

and the algorithm has executed. 



 
Figure 2. Screen Shot of Identikit after Find Best Fit is Executed 

 

The figures show that the simulated annealing algorithm automatically produced a 

good fit between the observational and simulation data.  By using an optimization 

function which averages how far each observational data point is from its closest 

simulation data point and implementing a simulated annealing algorithm determined the 

best combination of “moves”, the user is able to automatically determine a good fit. 
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