
Intersection Detection of Two Ellipsoids

Jeff Duzak

March 12, 2007

Introduction

 An essential problem for 3-dimensional simulations and games is detecting collisions

between objects. For example, a bowling simulation must detect when the bowling ball collides

with a pin, or two pins collide with each other. Typically, 3d objects will be approximated using

simple primitive objects, such as polyhedra and ellipsoids. A bowling ball is simply a sphere,

and a pin can be approximated as two ellipsoids. An ellipsoid itself can be constructed by

applying scaling, rotation, and translation operations to a unit sphere. Therefore, an algorithm

that could quickly detect the intersection of two spheres under scaling, rotation, and translation

operations would be very useful. The purpose of this research is to find such an algorithm.

 The literature contains a wealth of algorithms for intersection detection. These

algorithms vary with respect to the types of shapes supported, with some algorithms supporting

completely arbitrary shapes, some supporting broad classes of shapes such as quadric surfaces,

and some approximating complex shapes as triangle meshes. Further, the goals of the algorithms

vary. Some algorithms are only interested in detecting whether or not there is an intersection.

Others are concerned with computing the shape of the intersection. Others are concerned with

detecting collisions over a window in time between moving objects. This report will review

these algorithms, and discuss their application to our central problem.

 Last, this report will describe in detail an algorithm using an adaptation of Newton's

method of finding roots of a continuous function. We will discuss the implementation of this

algorithm, and investigate its computational complexity.

Known Methods

 There are a large number of algorithms for intersection detection of 3d objects, each

useful for a particular domain of problems. A 2004 SIGGRAPH course [HA04] was entirely

devoted to describing various intersection and collision detection methods. The course points

out that there is a distinction between intersection detection, which checks if two objects occupy

the same point in space at a static snapshot in time, and collision detection, which detects if two

objects intersect at any point in a given window in time. A typical approach to collision

detection is to partition a window in time into a number of static snapshots, and perform

intersection detection on each of these. The number of snapshots would depend on the size and

proximity of the objects and the speed at which objects move. However, the problem with this

approach is that, at points in time where objects are close together and moving relatively fast, a

very large number of snapshots are needed, and so the algorithm can virtually lock up. Further,

in certain cases where objects just graze each other, it possible to miss collisions.

 For certain limited, simple situations, it is possible to determine with certainty whether or

not two objects collide in a given window of time without performing intersection detection a

large number of times. For example, M. Gomez describes a simple method to detect the

collision of two circles moving with constant velocities [GO99]. Such methods are very useful

for 3-d games and simulations. In our example of a bowling simulation, it would be very useful

to be able to, in a single calculation, determine the point in time at which the ball collides with a

pin. However, these methods only cover very simple situations, such as collisions of two circles,

and therefore can't be applied to the more complicated problem of the collisions of arbitrary 3-

dimensional ellipsoids.

 A large amount of research is devoted to detecting collisions between polyhedra. A

polyhedron is composed of a number of polygon faces, each of which can be broken down into a

number of triangles. Therefore, the problem reduces to intersection detection between triangles.

Fujio Yamaguchi [YA85] describes how intersection detection of many simple objects, such as

rays and triangles, reduces to computing the determinant(s) of one or more 4x4 matrices, and

proposes to build hardware support for determinant computation as a means to detect

intersections quickly.

 Chazelle and Dobkin [CH87] describe an algorithm that can detect the intersection of two

polyhedra in O(log
3
n) time, where n denotes the total number of vertices in the polyhedra. David

Mount [MO92] describes an algorithm that can compute whether or not two 2-dimensional

polygons intersect in O(m log
2
n) time, given some preprocessing on the polygons, where n again

is the count of vertices, and m is the count of vertices in the simplest polygonal curve that

separates the two polygons in question. It is not clear if a variation of Mount's algorithm can be

applied to 3-dimensional objects.

 Assuming we were to use a polyhedron method to detect intersections, we would have to

approximate our ellipsoids as polyhedra. We want to detect intersections within a certain margin

of error ε. Supposing that the largest radius of either ellipsoid is given by r, the value 𝑘 =
𝑟

𝜖

gives an estimate of the size of the problem. It is useful to know the complexity of a polyhedron

intersection method in terms of k. Given r and ε, we can calculate approximately how small of

triangles we would have to partition the ellipsoid into.

Figure 1. Approximation of an ellipsoid as a polyhedron, showing an approximate relationship between the length

of the side of a face and the maximum error in the approximation

 In the figure above, l denotes the length of the side of a face in the polyhedron, and,

approximating the ellipsoid as a sphere, r is the radius of the sphere. The maximum distance

from the polyhedron face to the ellipsoid is given by:

𝜖 = 𝑟 − 𝑟2 −
1

4
𝑙2

The first non-zero term of the Taylor expansion for this expression gives us:

𝜖 ≈
𝑙2

8𝑟

This gives us the following expression for k:

𝑘 =
𝑟

𝜖
≈

8𝑟2

𝑙2

 The surface area of the ellipsoid is proportional to r
2
, and the area of a face is

proportional to l
2
, therefore the number of faces required is proportional to r

2
/ l

2
. Therefore, the

number of vertices n is also proportional to r
2
 / l

2
, which itself is proportional to k, our measure

of the size of the problem. Therefore, Chazelle and Dobkin's method can detect intersections

with the desired accuracy in O(log
3
k) time.

 Other research considers intersections of more general objects. A considerable amount of

work has been done to compute the intersections of quadric surfaces [LE76, SA83, GO91]. A

quadric surface is one defined by the equation:

 𝑥 𝑦 𝑧 1 𝑀

𝑥
𝑦
𝑧
1

 = 0

Here, M is a 4x4 matrix. The matrix M completely describes the surface. Therefore, the matrix

and the surface it describes are often referred to interchangeably. Conveniently, an arbitrary

ellipsoid is a quadric surface. If a point lies on two quadric surfaces M and N, then it must

satisfy the equation

 𝑥 𝑦 𝑧 1 𝑀 + 𝛼𝑁

𝑥
𝑦
𝑧
1

 = 0

for any value of 𝛼. Certain properties of the matrix, such as its rank, can be used to deduce

properties of the surface it describes. In fact, certain combinations of properties of the matrix

indicate that the quadric surface is invalid, that no points satisfy the equation above. Therefore,

the problem of determining whether two quadric surfaces intersect reduces to the problem of

determining if 𝑀 + 𝛼𝑁 is invalid for some 𝛼. If such an 𝛼 exists, then no points satisfy the

equation above. Therefore, no points lie on both quadric surfaces, and therefore the surfaces do

not intersect.

 The complexity of this algorithm is unclear, since it is unclear how to search for values of

𝛼 that produce invalid quadric surfaces. Further, this algorithm is more concerned with

determining the exact shape of an intersection between two quadric surfaces. Therefore, it is

fairly heavyweight for the problem at hand, which is simply to determine whether or not two

ellipsoids intersect.

 Last, research by Paul Comba [CO68] allows for intersection detection of arbitrary

objects. In his algorithm, an object is defined as the intersection of the sets of points which

satisfy a number of continuous, differentiable inequalities 𝑔𝑖 𝑥, 𝑦, 𝑧 ≤ 0. Comba combines

these inequalities into a single continuous, differentiable inequality such that any point that

satisfies the inequality lies in both objects. Therefore, if such a point exists, the two objects

intersect. So, the problem is reduced to that of finding the minimum value of a function. A

variety of methods, such as Newton's method, can be used to find this minimum. In this way,

Comba's algorithm is similar to the algorithm that is described below.

An Algorithm using Newton's Method

 Here, we will describe an algorithm that was not found in the literature. First, let's define

more precisely the problem of finding the intersection of two arbitrary ellipsoids. We will

represent a point p using homogenous coordinates, which are defined as follows:

𝑃 =

𝑥
𝑦
𝑧
1

where x, y, and z are the customary coordinates in 3-dimesional space, and the 1 in the last row

of the vector is useful in order to allow translations operations to be performed via matrix

multiplication. Scaling, rotation, and translation operations can be performed by multiplying the

coordinate vector by a 4x4 matrix. An arbitrary ellipsoid is formed by performing a scaling

operation, followed by a rotation, followed by a translation on a unit circle. Hence, an ellipsoid

is defined as:

𝐸 = 𝑇𝑅𝑆

𝑥
𝑦
𝑧
1

 ∀ 𝑥2 + 𝑦2 + 𝑧2 = 1

where T, R, and S are the translation, rotation, and scaling matrices. Note that the matrix TRS

fully defines the ellipsoid. Let us denote the ellipsoid's "local" coordinate space to mean the

coordinate space in which the ellipsoid is a unit circle centered around the origin, and denote the

"global" coordinate space to be the space in which all of our objects reside. Therefore,

multiplying by TRS converts coordinates from the ellipsoid's local coordinate space to the global

coordinate space. Further, multiplying by S
-1

R
-1

T
-1

 converts coordinates from the global space to

the ellipsoid's local space.

 Now, suppose we have two ellipsoids E1 and E2 defined by T1R1S1 and T2R2S2. Define

two new matrices as follows:

𝑀1 = 𝑇1𝑅1𝑆1

𝑀2 = 𝑇2𝑅2𝑆2

In order to convert coordinates from E1's space to E2's space, we first convert from E1's space to

the global coordinate space, and then from the global space to E2's space. Therefore, multiplying

by the matrix M2M1
-1

 converts coordinates from E1's space to E2's space.

 In order to determine if E1 and E2 intersect, we want to find the point on E2 with the

minimum distance to the center of E1. If that point is within a distance of 1 from the origin in

E1's coordinate space, then the ellipsoids intersect. In order to find the point with the minimum

distance to E1, we should set up a distance function 𝑑 𝑢, 𝑣 that takes as inputs two parameters

that define the location of a point on the surface of E2. The extremes of the function happen at

points for which ∇𝑑(𝑢, 𝑣) = 0. We use Newton's method to solve for these points.

 In Newton's method, given a continuous, differentiable function f(x), you solve for a root

f(x)=0 by making iteratively improving guesses. Given a guess xi, the next guess xi+1 is

calculated as follows:

𝑥𝑖+1 = 𝑥𝑖 −
𝑓 𝑥𝑖

𝑑𝑓
𝑑𝑥

(𝑥𝑖)

 For our problem, we take an initial guess for the point on E2 at the minimum distance to

the center of E1, and then make subsequent guesses that we believe will bring ∇𝑑 𝑢. 𝑣 closer to

zero. Note that it is easier to express the distance function in E1's coordinate space, but it is

easier to specify a valid point on E2 in E2's coordinate space. Therefore, the algorithm will

convert points back and forth between E1's and E2's coordinate spaces. Also note that vectors can

be scaled and rotated using the same scaling and rotating matrices used for points. However,

translations do not affect vectors. Therefore, to convert a vector from E2's space to E1's space,

we multiply it by S1
-1

R1
-1

R2S2. To convert a vector from E1's space to E2's space, we multiply by

the inverse matrix.

 Our iterative guesses are points on the surface of E2. The coordinate system which we

use to define these points, and with which we parameterize the distance function, is arbitrary.

For example, it might make sense to use standard polar coordinates, where θ is thought of as the

angle down from the north pole of the unit sphere, and ϕ is thought of as an angle of longitude.

However, since the coordinate system is arbitrary, we can choose whichever one is most

convenient. Further, we can change the coordinate system we use from iteration to iteration.

This is particularly easy if we don't store our guess points in terms of these coordinates, but

rather store them simply in Cartesian coordinates.

 Recall that in E2's local coordinate space, E2 is a unit sphere. Our guess point lies on the

surface of this sphere. Any unit vector orthogonal to the radius to our guess point is in fact the

derivative of the position of that point with respect to some parameter u in some coordinate

system. For example, after choosing the unit vector, we could find a polar coordinate system

such that our unit vector is equal to
𝑑𝑝

𝑑𝜃
. If we find two such vectors that are themselves

orthogonal, then we have
𝑑𝑝

𝑑𝑢
 and

𝑑𝑝

𝑑𝑣
 for some coordinate system u, v. Further, both

𝑑2𝑝

𝑑𝑢2 and
𝑑2𝑝

𝑑𝑣2

are equal to the unit vector from our guess point toward the center of the sphere, that is, the

negative of the radius to the guess point. So, without precisely defining the coordinate system,

we have found
𝑑𝑝

𝑑𝑢
,
𝑑𝑝

𝑑𝑣
,
𝑑2𝑝

𝑑𝑢2, and
𝑑2𝑝

𝑑𝑣2 . We then convert these vectors to E1's coordinate space.

Figure 2. Any two unit vectors that are orthogonal to each other and orthogonal to the radius are equal to dp/du

and dp/dv for some coordinate system (u,v).

 We now have
𝑑𝑝

𝑑𝑢
 in E1's coordinate space, and can likewise calculate our guess point's

position in E1's coordinate space. Clearly,
𝑑𝑑

𝑑𝑢
 is the length of the component of

𝑑𝑝

𝑑𝑢
 that lies in the

same direction as a vector from the center of E1 to our guess point. That is, given some

infinitesimal change in u, we know in what direction and at what rate our guess point will move.

The component of that movement away from the center of E1 is exactly the rate at which the

distance from the center of E1 will increase. The same argument applies to
𝑑2𝑑

𝑑𝑢2. Therefore, if N

is a unit vector pointing from the center of E1 to our guess point, then we have

𝑑𝑑

𝑑𝑢
=

𝑑𝑝

𝑑𝑢
∙ 𝑁

𝑑2𝑑

𝑑𝑢2
=

𝑑2𝑝

𝑑𝑢2
∙ 𝑁

Similarly, we calculate
𝑑𝑑

𝑑𝑣
 and

𝑑2𝑑

𝑑𝑣2 . Once we have calculated all four of these values, we can

compute how far we should move our guess point as follows:

𝑝′ = 𝑝 −

𝑑𝑑
𝑑𝑢
𝑑2𝑑
𝑑𝑢2

𝑑𝑝

𝑑𝑢
−

𝑑𝑑
𝑑𝑣
𝑑2𝑑
𝑑𝑣2

𝑑𝑝

𝑑𝑣

 Newton's method is known to converge quadradically. That is, if we think about the

number of significant digits in the result, this number doubles with each iteration of the method.

Therefore, our algorithm should run in O(log log k) time. This is significantly faster than the

other methods described.

References

[CH87] Chazelle, B. and D. P. Dobkin. Intersection of convex objects in two and three

dimensions. Journal of the ACM, 31:1–27, 1987.

[CO68] Comba, Paul G. A Procedure for Detecting Intersections of Three-Dimensional

Objects. Journal of the ACM, Volume 15, Issue 3, July 1968. Pages 354 - 366.

[GO91] Goldman, Ronald N. and James R. Miller. Combining algebraic rigor with geometric

robustness for the detection and calculation of conic sections in the intersection of two natural

quadric surfaces. Proceedings of the first ACM symposium on Solid modeling foundations and

CAD/CAM applications, 1991.

[GO99] Gomez, M. Simple intersection tests for games. Gamasutra, October 1999.

[HA04] Hadap, Sunil et al. Collision detection and proximity queries. ACM SIGGRAPH 2004

Course Notes.

[LE76] Levin, J. A Parametric Algorithm for Drawing Pictures of Solid Objects Composed of

Quadric Surfaces. Communications of the ACM, Vol. 19, No. 10, October 1976, pp. 555-563.

[MO92] Mount, David M. Intersection detection and separators for simple polygons.

Proceedings of the eighth annual symposium on Computational geometry, 1992.

[SA83] Sarraga, R. F. Algebraic Methods for Intersections of Quadric Surfaces in GMSOLID.

Computer Vision, Graphics, and Image Processing, Vol. 22, No. 2, May 1983, pp. 222-238.

[YA85] Yamaguchi, Fujio. A Unified Approach to Interference Problems Using a Triangle

Processor. ACM SIGGRAPH Computer Graphics, v.19 n.3, p.141-149, Jul. 1985.

