
Intersection Detection of Two Ellipsoids 

Jeff Duzak 

March 12, 2007 

 

Introduction 

 

 An essential problem for 3-dimensional simulations and games is detecting collisions 

between objects.  For example, a bowling simulation must detect when the bowling ball collides 

with a pin, or two pins collide with each other.  Typically, 3d objects will be approximated using 

simple primitive objects, such as polyhedra and ellipsoids.  A bowling ball is simply a sphere, 

and a pin can be approximated as two ellipsoids.  An ellipsoid itself can be constructed by 

applying scaling, rotation, and translation operations to a unit sphere.  Therefore, an algorithm 

that could quickly detect the intersection of two spheres under scaling, rotation, and translation 

operations would be very useful.  The purpose of this research is to find such an algorithm. 

 The literature contains a wealth of algorithms for intersection detection.  These 

algorithms vary with respect to the types of shapes supported, with some algorithms supporting 

completely arbitrary shapes, some supporting broad classes of shapes such as quadric surfaces, 

and some approximating complex shapes as triangle meshes.  Further, the goals of the algorithms 

vary.  Some algorithms are only interested in detecting whether or not there is an intersection.  

Others are concerned with computing the shape of the intersection.  Others are concerned with 

detecting collisions over a window in time between moving objects.  This report will review 

these algorithms, and discuss their application to our central problem. 

 Last, this report will describe in detail an algorithm using an adaptation of Newton's 

method of finding roots of a continuous function.  We will discuss the implementation of this 

algorithm, and investigate its computational complexity. 

 

 

Known Methods 

 

 There are a large number of algorithms for intersection detection of 3d objects, each 

useful for a particular domain of problems.  A 2004 SIGGRAPH course [HA04] was entirely 

devoted to describing various intersection and collision detection methods.  The course points 

out that there is a distinction between intersection detection, which checks if two objects occupy 

the same point in space at a static snapshot in time, and collision detection, which detects if two 

objects intersect at any point in a given window in time.  A typical approach to collision 

detection is to partition a window in time into a number of static snapshots, and perform 

intersection detection on each of these.  The number of snapshots would depend on the size and 

proximity of the objects and the speed at which objects move.  However, the problem with this 

approach is that, at points in time where objects are close together and moving relatively fast, a 



very large number of snapshots are needed, and so the algorithm can virtually lock up.  Further, 

in certain cases where objects just graze each other, it possible to miss collisions. 

 For certain limited, simple situations, it is possible to determine with certainty whether or 

not two objects collide in a given window of time without performing intersection detection a 

large number of times.  For example, M. Gomez describes a simple method to detect the 

collision of two circles moving with constant velocities [GO99].  Such methods are very useful 

for 3-d games and simulations.  In our example of a bowling simulation, it would be very useful 

to be able to, in a single calculation, determine the point in time at which the ball collides with a 

pin.  However, these methods only cover very simple situations, such as collisions of two circles, 

and therefore can't be applied to the more complicated problem of the collisions of arbitrary 3-

dimensional ellipsoids. 

 A large amount of research is devoted to detecting collisions between polyhedra.  A 

polyhedron is composed of a number of polygon faces, each of which can be broken down into a 

number of triangles.  Therefore, the problem reduces to intersection detection between triangles.  

Fujio Yamaguchi [YA85] describes how intersection detection of many simple objects, such as 

rays and triangles, reduces to computing the determinant(s) of one or more 4x4 matrices, and 

proposes to build hardware support for determinant computation as a means to detect 

intersections quickly. 

 Chazelle and Dobkin [CH87] describe an algorithm that can detect the intersection of two 

polyhedra in O(log
3
n) time, where n denotes the total number of vertices in the polyhedra.  David 

Mount [MO92] describes an algorithm that can compute whether or not two 2-dimensional 

polygons intersect in O(m log
2
n) time, given some preprocessing on the polygons, where n again 

is the count of vertices, and m is the count of vertices in the simplest polygonal curve that 

separates the two polygons in question.  It is not clear if a variation of Mount's algorithm can be 

applied to 3-dimensional objects. 

 Assuming we were to use a polyhedron method to detect intersections, we would have to 

approximate our ellipsoids as polyhedra.  We want to detect intersections within a certain margin 

of error ε.  Supposing that the largest radius of either ellipsoid is given by r, the value 𝑘 =
𝑟

𝜖
 

gives an estimate of the size of the problem.  It is useful to know the complexity of a polyhedron 

intersection method in terms of k.  Given r and ε, we can calculate approximately how small of 

triangles we would have to partition the ellipsoid into. 

  



 

 
Figure 1.  Approximation of an ellipsoid as a polyhedron, showing an approximate relationship between the length 

of the side of a face and the maximum error in the approximation 

 

 In the figure above, l denotes the length of the side of a face in the polyhedron, and, 

approximating the ellipsoid as a sphere, r is the radius of the sphere.  The maximum distance 

from the polyhedron face to the ellipsoid is given by: 

 

𝜖 = 𝑟 −  𝑟2 −
1

4
𝑙2 

 

The first non-zero term of the Taylor expansion for this expression gives us: 

 

𝜖 ≈
𝑙2

8𝑟
 

 

This gives us the following expression for k: 

 

𝑘 =
𝑟

𝜖
≈

8𝑟2

𝑙2
 

 

 The surface area of the ellipsoid is proportional to r
2
, and the area of a face is 

proportional to l
2
, therefore the number of faces required is proportional to r

2 
/ l

2
.  Therefore, the 

number of vertices n is also proportional to r
2
 / l

2
, which itself is proportional to k, our measure 

of the size of the problem.  Therefore, Chazelle and Dobkin's method can detect intersections 

with the desired accuracy in O(log
3
k) time. 

 Other research considers intersections of more general objects.  A considerable amount of 

work has been done to compute the intersections of quadric surfaces [LE76, SA83, GO91].  A 

quadric surface is one defined by the equation: 

 



 𝑥 𝑦 𝑧 1 𝑀  

𝑥
𝑦
𝑧
1

 = 0 

 

Here, M is a 4x4 matrix.  The matrix M completely describes the surface.  Therefore, the matrix 

and the surface it describes are often referred to interchangeably.  Conveniently, an arbitrary 

ellipsoid is a quadric surface.  If a point lies on two quadric surfaces M and N, then it must 

satisfy the equation 

 

 𝑥 𝑦 𝑧 1  𝑀 + 𝛼𝑁  

𝑥
𝑦
𝑧
1

 = 0 

 

for any value of 𝛼.  Certain properties of the matrix, such as its rank, can be used to deduce 

properties of the surface it describes.  In fact, certain combinations of properties of the matrix 

indicate that the quadric surface is invalid, that no points satisfy the equation above.  Therefore, 

the problem of determining whether two quadric surfaces intersect reduces to the problem of 

determining if 𝑀 + 𝛼𝑁 is invalid for some 𝛼.  If such an 𝛼 exists, then no points satisfy the 

equation above.  Therefore, no points lie on both quadric surfaces, and therefore the surfaces do 

not intersect. 

 The complexity of this algorithm is unclear, since it is unclear how to search for values of 

𝛼 that produce invalid quadric surfaces.  Further, this algorithm is more concerned with 

determining the exact shape of an intersection between two quadric surfaces.  Therefore, it is 

fairly heavyweight for the problem at hand, which is simply to determine whether or not two 

ellipsoids intersect. 

 Last, research by Paul Comba [CO68] allows for intersection detection of arbitrary 

objects.  In his algorithm, an object is defined as the intersection of the sets of points which 

satisfy a number of continuous, differentiable inequalities 𝑔𝑖 𝑥, 𝑦, 𝑧 ≤ 0.  Comba combines 

these inequalities into a single continuous, differentiable inequality such that any point that 

satisfies the inequality lies in both objects.  Therefore, if such a point exists, the two objects 

intersect.  So, the problem is reduced to that of finding the minimum value of a function.  A 

variety of methods, such as Newton's method, can be used to find this minimum.  In this way, 

Comba's algorithm is similar to the algorithm that is described below. 

 

 

An Algorithm using Newton's Method 

 

 Here, we will describe an algorithm that was not found in the literature.  First, let's define 

more precisely the problem of finding the intersection of two arbitrary ellipsoids.  We will 

represent a point p using homogenous coordinates, which are defined as follows: 



 

𝑃 =  

𝑥
𝑦
𝑧
1

  

 

where x, y, and z are the customary coordinates in 3-dimesional space, and the 1 in the last row 

of the vector is useful in order to allow translations operations to be performed via matrix 

multiplication.  Scaling, rotation, and translation operations can be performed by multiplying the 

coordinate vector by a 4x4 matrix.  An arbitrary ellipsoid is formed by performing a scaling 

operation, followed by a rotation, followed by a translation on a unit circle.  Hence, an ellipsoid 

is defined as: 

 

𝐸 = 𝑇𝑅𝑆  

𝑥
𝑦
𝑧
1

  ∀ 𝑥2 + 𝑦2 + 𝑧2 = 1 

 

where T, R, and S are the translation, rotation, and scaling matrices.  Note that the matrix TRS 

fully defines the ellipsoid.  Let us denote the ellipsoid's "local" coordinate space to mean the 

coordinate space in which the ellipsoid is a unit circle centered around the origin, and denote the 

"global" coordinate space to be the space in which all of our objects reside.  Therefore, 

multiplying by TRS converts coordinates from the ellipsoid's local coordinate space to the global 

coordinate space.  Further, multiplying by S
-1

R
-1

T
-1

 converts coordinates from the global space to 

the ellipsoid's local space. 

 Now, suppose we have two ellipsoids E1 and E2 defined by T1R1S1 and T2R2S2.  Define 

two new matrices as follows: 

 

𝑀1 = 𝑇1𝑅1𝑆1 

𝑀2 = 𝑇2𝑅2𝑆2 

 

In order to convert coordinates from E1's space to E2's space, we first convert from E1's space to 

the global coordinate space, and then from the global space to E2's space.  Therefore, multiplying 

by the matrix M2M1
-1

 converts coordinates from E1's space to E2's space. 

 In order to determine if E1 and E2 intersect, we want to find the point on E2 with the 

minimum distance to the center of E1.  If that point is within a distance of 1 from the origin in 

E1's coordinate space, then the ellipsoids intersect.  In order to find the point with the minimum 

distance to E1, we should set up a distance function 𝑑 𝑢, 𝑣  that takes as inputs two parameters 

that define the location of a point on the surface of E2.  The extremes of the function happen at 

points for which ∇𝑑(𝑢, 𝑣) = 0.  We use Newton's method to solve for these points. 



 In Newton's method, given a continuous, differentiable function f(x), you solve for a root 

f(x)=0 by making iteratively improving guesses.  Given a guess xi, the next guess xi+1 is 

calculated as follows: 

 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓 𝑥𝑖 

𝑑𝑓
𝑑𝑥

(𝑥𝑖)
 

 

 For our problem, we take an initial guess for the point on E2 at the minimum distance to 

the center of E1, and then make subsequent guesses that we believe will bring ∇𝑑 𝑢. 𝑣  closer to 

zero.  Note that it is easier to express the distance function in E1's coordinate space, but it is 

easier to specify a valid point on E2 in E2's coordinate space.  Therefore, the algorithm will 

convert points back and forth between E1's and E2's coordinate spaces.  Also note that vectors can 

be scaled and rotated using the same scaling and rotating matrices used for points.  However, 

translations do not affect vectors.  Therefore, to convert a vector from E2's space to E1's space, 

we multiply it by S1
-1

R1
-1

R2S2.  To convert a vector from E1's space to E2's space, we multiply by 

the inverse matrix. 

 Our iterative guesses are points on the surface of E2.  The coordinate system which we 

use to define these points, and with which we parameterize the distance function, is arbitrary.  

For example, it might make sense to use standard polar coordinates, where θ is thought of as the 

angle down from the north pole of the unit sphere, and ϕ is thought of as an angle of longitude.  

However, since the coordinate system is arbitrary, we can choose whichever one is most 

convenient.  Further, we can change the coordinate system we use from iteration to iteration.  

This is particularly easy if we don't store our guess points in terms of these coordinates, but 

rather store them simply in Cartesian coordinates. 

 Recall that in E2's local coordinate space, E2 is a unit sphere.  Our guess point lies on the 

surface of this sphere.  Any unit vector orthogonal to the radius to our guess point is in fact the 

derivative of the position of that point with respect to some parameter u in some coordinate 

system.  For example, after choosing the unit vector, we could find a polar coordinate system 

such that our unit vector is equal to 
𝑑𝑝

𝑑𝜃
.  If we find two such vectors that are themselves 

orthogonal, then we have 
𝑑𝑝

𝑑𝑢
 and 

𝑑𝑝

𝑑𝑣
 for some coordinate system u, v.  Further, both 

𝑑2𝑝

𝑑𝑢2 and 
𝑑2𝑝

𝑑𝑣2  

are equal to the unit vector from our guess point toward the center of the sphere, that is, the 

negative of the radius to the guess point.  So, without precisely defining the coordinate system, 

we have found 
𝑑𝑝

𝑑𝑢
, 
𝑑𝑝

𝑑𝑣
, 
𝑑2𝑝

𝑑𝑢2, and 
𝑑2𝑝

𝑑𝑣2 .  We then convert these vectors to E1's coordinate space. 

 



 
Figure 2.  Any two unit vectors that are orthogonal to each other and orthogonal to the radius are equal to dp/du 

and dp/dv for some coordinate system (u,v). 

 

 We now have 
𝑑𝑝

𝑑𝑢
 in E1's coordinate space, and can likewise calculate our guess point's 

position in E1's coordinate space.  Clearly, 
𝑑𝑑

𝑑𝑢
 is the length of the component of 

𝑑𝑝

𝑑𝑢
 that lies in the 

same direction as a vector from the center of E1 to our guess point.  That is, given some 

infinitesimal change in u, we know in what direction and at what rate our guess point will move.  

The component of that movement away from the center of E1 is exactly the rate at which the 

distance from the center of E1 will increase.  The same argument applies to 
𝑑2𝑑

𝑑𝑢2.  Therefore, if N 

is a unit vector pointing from the center of E1 to our guess point, then we have 

 

𝑑𝑑

𝑑𝑢
=

𝑑𝑝

𝑑𝑢
∙ 𝑁 

𝑑2𝑑

𝑑𝑢2
=

𝑑2𝑝

𝑑𝑢2
∙ 𝑁 

 

Similarly, we calculate 
𝑑𝑑

𝑑𝑣
 and 

𝑑2𝑑

𝑑𝑣2 .  Once we have calculated all four of these values, we can 

compute how far we should move our guess point as follows: 

 

𝑝′ = 𝑝 −  

𝑑𝑑
𝑑𝑢
𝑑2𝑑
𝑑𝑢2

 
𝑑𝑝

𝑑𝑢
−  

𝑑𝑑
𝑑𝑣
𝑑2𝑑
𝑑𝑣2

 
𝑑𝑝

𝑑𝑣
 

 



 Newton's method is known to converge quadradically.  That is, if we think about the 

number of significant digits in the result, this number doubles with each iteration of the method.  

Therefore, our algorithm should run in O(log log k) time.  This is significantly faster than the 

other methods described.  
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