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Reading

• Chapter 15
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Outline for the Evening

• DNA

• Approximate String Matching

• Approximate String Searching
• Dynamic Progamming

• Longest Common Subsequence
• DNA reconstruction

• Contiguous Ordering and PQ-trees
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DNA

• DNA is a large molecule that can be 
abstractly defined as a sequence of symbols 
from the set, A, C, G, T, called nucleotides.

• The human genome has about 3 billion 
nucleotides. 
– A huge percentage of the genome is shared by all 

humans.
– Some of the variation makes us different.
– Some of the variation is inconsequential.
– The human genome is still being discovered.
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Approximate Matching

• Two DNA sequences approximately match if 
one can be transformed into the other by a 
short sequence of replacements and 
insertions of gaps.

• Example:
– S = AGCATG

– T = AGATCGT

• Approximate matching
– S’  = A G - - C A T G

– T’  = A G A T C G T -

- is a gap
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Applications of Approximate 
Matching

• DNA string alignment.
– Given two similar DNA sequences find the best 

way to align them to the same length.

• DNA database searching. 
– Find DNA sequences that are similar to the query.

• Approximate text matching for searching.
– agrep in unix

• Spell checking
– Find the words that most closely match the 

misspelled word.
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Scoring an Approximate Matching

• We need a way of scoring the quality of an 
approximate matching.

• A scoring function is a mapping σ from 
{A, C, G, T, -}2 to integers.
– The quantity σ(x,y) is the score of a pair of 

symbols, x and y.

• Example:
– σ(x,y)  = +2 if x=y and x in {A,C,G,T}
– σ(x,y)  = -1 otherwise
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Scoring Example

• Example:
– S’  = A G - - C A T G

– T’  = A G A T C G T -

• Score = 4 x 2 + 4 x(-1) = 4

• Is this the best match between the two strings 
with this scoring function?
– S = AGCATG

– T = AGATCGT
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Approximate String Matching 
Problem

• Input: Two strings S and T in an alphabet Σ
and a scoring function σ.

• Output: Two strings S’ and T’ in the alphabet 
Σ’ = Σ union {-} with the properties:
– S = S’ with the -’s removed.
– T = T’ with the -’s removed.
– |S’| = |T’|

– The score                                is maximized. ( )�
=

|S'|

1i

[i]T'[i],S'�
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Algorithms for Approximate String 
Matching

• O(mn) time and storage algorithm (using 
dynamic programming) invented by 
Needleman and Wunch, 1970.

• Fischer and Paterson, 1974, invented a very 
similar algorithm for computing the minimum 
edit distance between two strings.
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Dynamic Programming for 
Approximate String Matching

• Assume S has length m and T has length n.

• For all i and j, 0 < i < m and 0 < j < n, we find 
the maximum score for the sequences S[1..i] 
and T[1..j].

• The “dynamic program” fills in a (m+1)x(n+1) 
matrix M in increasing order of i and j with 
these maximum values.

• Once the dynamic program has completed 
we can recover the optimal string S’ and T’ 
from the matrix M. 
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Max Score Recurrence

• Define M[i,j] = maximum score for a match 
between S[1..i] and T[1..j].

T[j])},� (1]jM[i,

),� (S[i],j]1,M[i

T[j]),� (S[i],1]j1,M[i

max{j]M[i,

T[k]),� (j]M[0,

)� (S[k],M[i,0]

j

1k

i

1k

−+−
−+−

+−−
=

−=

−=

�

�

=

=
match of S[1..i] with empty string

match of T[1..j] with empty string
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Dynamic Program Initialization

S = AGCATG
T = AGATCGT

0 -1 -2 -3 -4 -5 -6 -70
1 A
2 G
3 C
4 A
5 T
6 G

-1

-2

-3

-4

-5

0 1 2 3 4 5 6 7
A G A T C G T

scoring function
+2 for exact match
-1 otherwise

-6
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The Dynamic Programming Pattern

a b

xc

d = a + 2  if s = t
= a  - 1  otherwise

h = c  - 1  

v = b  - 1

x = max(d, h, v)

s

t
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Dynamic Program Example (1)

S = AGCATG
T = AGATCGT

0 -1 -2 -3 -4 -5 -6 -70
1 A
2 G
3 C
4 A
5 T
6 G

-1 2

-2

-3

-4

-5

0 1 2 3 4 5 6 7
A G A T C G T

scoring function
+2 for exact match
-1 otherwise

-6
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Dynamic Program Example (2)

S = AGCATG
T = AGATCGT

0 -1 -2 -3 -4 -5 -6 -70
1 A
2 G
3 C
4 A
5 T
6 G

-1 2 1

-2 1

-3

-4

-5

0 1 2 3 4 5 6 7
A G A T C G T

scoring function
+2 for exact match
-1 otherwise

-6
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Dynamic Program Example (3)

S = AGCATG
T = AGATCGT

0 -1 -2 -3 -4 -5 -6 -70
1 A
2 G
3 C
4 A
5 T
6 G

-1 2 1 0

-2 1 4

-3 0

-4

-5

0 1 2 3 4 5 6 7
A G A T C G T

scoring function
+2 for exact match
-1 otherwise

-6
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Dynamic Program Example (4)

S = AGCATG
T = AGATCGT

0 -1 -2 -3 -4 -5 -6 -70
1 A
2 G
3 C
4 A
5 T
6 G

-1 2 1 0 -1 -2 -3 -4

-2 1 4 3 2 1 0 -1

-3 0 3 3 2 4 3 2

-4 -1 2 5 4 3 3 2

-5 -2 1 4 7 6 5

0 1 2 3 4 5 6 7
A G A T C G T

scoring function
+2 for exact match
-1 otherwise

-6 -3 0 3 6 6
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Dynamic Program Example (5)

S = AGCATG
T = AGATCGT

0 -1 -2 -3 -4 -5 -6 -70
1 A
2 G
3 C
4 A
5 T
6 G

-1 2 1 0 -1 -2 -3 -4

-2 1 4 3 2 1 0 -1

-3 0 3 3 2 4 3 2

-4 -1 2 5 4 3 3 2

-5 -2 1 4 7 6 5 5

0 1 2 3 4 5 6 7
A G A T C G T

scoring function
+2 for exact match
-1 otherwise

-6 -3 0 3 6 6 8 7

Max score for any
matching
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Dynamic Programming Order

By row
for i = 1 to m do

for j = 1 to n do
M[i,j] :=  ...

By column
for j = 1 to n do

for i = 1 to m do
M[i,j] := ... 

By diagonal

Which order is best?
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How to Find the Matching

• To find S’ and T’ we build a matching graph.  

a b

xcs

t

x = a + 2  if s = t 
= a  - 1  otherwise ?

x = c  - 1 ?

x = b  - 1 ?

If the answer is yes, 
include the corresponding edge.
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Computing the Matching Graph (1) 

0 -1 -2 -3 -4 -5 -6 -70
1 A
2 G
3 C
4 A
5 T
6 G

-1 2 1 0 -1 -2 -3 -4

-2 1 4 3 2 1 0 -1

-3 0 3 3 2 4 3 2

-4 -1 2 5 4 3 3 2

-5 -2 1 4 7 6 5 5

0 1 2 3 4 5 6 7
A G A T C G T

-6 -3 0 3 6 6 8 7
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Computing the Matching Graph (2) 

0 -1 -2 -3 -4 -5 -6 -70
1 A
2 G
3 C
4 A
5 T
6 G

-1 2 1 0 -1 -2 -3 -4

-2 1 4 3 2 1 0 -1

-3 0 3 3 2 4 3 2

-4 -1 2 5 4 3 3 2

-5 -2 1 4 7 6 5 5

0 1 2 3 4 5 6 7
A G A T C G T

-6 -3 0 3 6 6 8 7
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Computing the Matching Graph (3) 

0 -1 -2 -3 -4 -5 -6 -70
1 A
2 G
3 C
4 A
5 T
6 G

-1 2 1 0 -1 -2 -3 -4

-2 1 4 3 2 1 0 -1

-3 0 3 3 2 4 3 2

-4 -1 2 5 4 3 3 2

-5 -2 1 4 7 6 5 5

0 1 2 3 4 5 6 7
A G A T C G T

-6 -3 0 3 6 6 8 7
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Computing the Matching Graph 

0 -1 -2 -3 -4 -5 -6 -70
1 A
2 G
3 C
4 A
5 T
6 G

-1 2 1 0 -1 -2 -3 -4

-2 1 4 3 2 1 0 -1

-3 0 3 3 2 4 3 2

-4 -1 2 5 4 3 3 2

-5 -2 1 4 7 6 5 5

0 1 2 3 4 5 6 7
A G A T C G T

-6 -3 0 3 6 6 8 7
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Computing the Matching Path 

0 -1 -2 -3 -4 -5 -6 -7
0
1 A
2 G
3 C
4 A
5 T
6 G

-1 2 1 0 -1 -2 -3 -4

-2 1 4 3 2 1 0 -1

-3 0 3 3 2 4 3 2

-4 -1 2 5 4 3 3 2

-5 -2 1 4 7 6 5 5

0 1 2 3 4 5 6 7
A G A T C G T

-6 -3 0 3 6 6 8 7

Matching
Path
(0,0)
(1,1)
(2,2)
(3,2)
(4,3)
(5,4)
(5,5)
(6,6)
(6,7)

There can be 
multiple paths
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Algorithm to find Matching

• Follow any path in the matching graph 
starting at (m,n).  

• The path will end up at (0,0).
• Output each pair (i,j) visited to make a list of 

pairs forming a matching path. 
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Computing the Matching
p = length of the matching path P
i :=1;
j := 1; 
for k = 1 to p do

if P[k].first = P[k-1].first then
S’[k] := - ;

else
S’[k] :=  S[i];
i := i + 1;

if P[k].second = P[k-1].second then
T’[k] := - ;

else
T’[k] :=  T[j];
j := j + 1;

P  
0  (0,0)
1  (1,1)
2  (2,2)
3  (3,2)
4  (4,3)
5  (5,4)
6  (5,5)
7  (6,6)
8  (6,7)

first     second
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Creating the Matching

P  
0  (0,0)
1  (1,1)
2  (2,2)
3  (3,2)
4  (4,3)
5  (5,4)
6  (5,5)
7  (6,6)
8  (6,7)

1 2 3 4 5 6
S = A G C A T G
T = A G A T C G T

S’ = A G C A T - G -
T’ = A G - A T C G T

Score = 5 x 2  + 3 x (-1) = 7

Lecture 9 - Dynamic Programming, PQ-trees 30

Example of Multiple Paths

0 -1 -2 -3 -4 -50
1 A
2 C
3 G
4 C
5 T
6 G

-1 -1 1 0 -1 -2

-2 1 0 0 -1 -2

-3 0 0 -1 2 1

-4 -1 -1 -1 1 1

-5 -2 -2 1 0 3

0 1 2 3 4 5
C A T G T 

-6 -3 -3 0 3 2

- A C G C T G
C A T G - T -

A C G C T G -
- C A - T G T

A C G C T G -
- - C A T G T

score = 3 x 2 + 4 x (-1)
= 2

Multiple matching
with same score
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Exercise

• Find an optimal approximate matching for
– A  G  T  T C 
– A  C  T  A  T  C 

0 -1 -2 -3 -4 -5 -60
1 A
2 G
3 T
4 T
5 C

-1

-2

-3

-4

-5

0 1 2 3 4 5 6
A C T A T C
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Approximate String Searching

• Input: Query string Q and target string T in an 
alphabet Σ and a scoring function σ, and a 
minimum score r. 

• Output: The set of k such that for some i < k 
score(Q,T[i..k]) > r.  That is, an approximate 
match of some substring of T that ends at 
index k has a score of at least r.
– score(X,Y) is the maximum score for all matchings

between X and Y.
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Search Algorithm

• We change the previous dynamic program 
slightly.

T[j])},� (1]jM[i,

),� (Q[i],j]1,M[i

T[j]),� (Q[i],1]j1,M[i

max{j]M[i,

0j]M[0,

)� (Q[k],M[i,0]
i

1k

−+−
−+−

+−−
=
=

−=�
=

We don’t care where the match begins in T

Choose all k such that M[m,k] > r where m is the length of Q.
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Example of Approximate Matching

Q = AGTA
T = AGATCGTAGT

0 0 0 0 0 0 0 00
1 A
2 G
3 T
4 A

-1 2 1 2 1 0 -1 -1

-2 1 4 3 2 1 2 1

-3 0 3 3 5 4 3 4

-4 -1 2 5 4 4 3 3

0 1 2 3 4 5 6 7 8 9 10
A G A T C G T A G T

scoring function
+2 for exact match
-1 otherwise

0 0 0

2 1 0

1 4 3

3 3 6

6 5 5

r = 5

output is 3, 8, 9, 10
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Recovering the Matchings

Q = AGTA
T = AGATCGTAGT

0 0 0 0 0 0 0 00
1 A
2 G
3 T
4 A

-1 2 1 2 1 0 -1 -1

-2 1 4 3 2 1 2 1

-3 0 3 3 5 4 3 4

-4 -1 2 5 4 4 3 3

0 1 2 3 4 5 6 7 8 9 10
A G A T C G T A G T

0 0 0

2 1 0

1 4 3

3 3 6

6 5 5

Q  AGTA
T  AG- A 1- 3

Q  A- - GTA
T  ATCGTA 3- 8

Q  A- - GTA-
T  ATCGTAG 3- 9

Q  AGTA
T  AGT- 8- 10
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Notes on Approximate Matching

• Time complexity O(mn)

• Storage complexity O(mn)
– Storage in the dynamic program can be reduced 

to O(m+n) by just keeping the frontier.  
– Recovering the matching can be done in time 

O(m+n) cleverly.
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FASTA and BLAST

• Two of best known approximate search algorithms for 
DNA database searching

• Both use the idea of exclusion search
– Parameter k for number of possible errors
– Exact search on k+1 substrings. At least one must succeed

k = 4 search string

1. Find all the exact matches for at least one of the strings
2. For each such match do an approximate matching
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Example

AGTTATGCC AGT  TAT  GCC

k = 2

TTAGACGTTCATGACCTAGTTTAGCTATGAGAGTTATG

Dynamic Programming O(mn)
Exclusion Search O(sm2 + n)

m search string length
n database length
s number of successes in exact search
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Dynamic Programming

• A strategy for designing algorithms. 
• A technique, not an algorithm.
• The word “programming” is historical and predates 

computer programming.
• Ideal when the problem breaks down into recurring 

small sub-problems.
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Longest Common Subsequence

• Longest common subsequence (LCS) problem: 
– Given two sequences x[1..m] and y[1..n], find the longest 

subsequence which occurs in both (not necessarily 
contiguous).

– Example: x = A B C B D A B , y = B D C A B A
– B C and A A are both subsequences of both

• What is the LCS?  BCAB, BCBA
– Brute-force algorithm: For every subsequence of x, check if 

it’s a subsequence of y

• How many subsequences of x are there?

• What will be the running time of the brute-force alg?
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LCS Algorithm

• Brute-force algorithm: 2m subsequences of x 
each takes O(n) to search in y: O(n 2m)

• We can do better: for now, let’s only worry 
about the problem of finding the length of the 
LCS
– When finished we will see how to backtrack from 

this solution back to the actual LCS.

• Notice LCS problem has optimal substructure
– Subproblems: LCS of pairs of prefixes of x and y
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Finding LCS Length

• Define c[i,j] to be the length of the LCS of 
Xi =x[1..i] and Yj=y[1..j]
– What is the length of LCS of x and y?

c[m,n]
• Theorem: 

�
�
�

−−
=+−−

=
otherwisej])1,c[i1],jmax(c[i,

y[j], x[i]if11]j1,c[i
j]c[i,
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LCS Recurrence

Proof: When calculating c[i,j], there are two 

cases to consider:

• First case: x[i]=y[j]: one more symbol in 

strings X and Y matches, so the length of 

LCS Xi and Yj equals to the length of LCS of 

smaller strings Xi-1 and Yi-1 , plus 1.

�
�
�

−−
=+−−

=
otherwisej])1,c[i1],jmax(c[i,

y[j], x[i]if11]j1,c[i
j]c[i,
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LCS Recurrence

• Second case: x[i] ≠ y[j]

• As symbols don’t match, our solution is not 

improved, and the length of LCS(Xi , Yj) is the  

maximum of LCS(Xi, Yj-1) and LCS(Xi-1,Yj)

Why not just take the length of LCS(Xi-1, Yj-1) ?

�
�
�

−−
=+−−

=
otherwisej])1,c[i1],jmax(c[i,

y[j], x[i]if11]j1,c[i
j]c[i,
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LCS recursive solution

Why not just take the length of LCS(Xi-1, Yj-1) ?

Answer: Let x=abc   y=db         

c[3,2]=max( c[3,1], c[2,2] )=max(0,1)=1

c[3,2]≠ c[2,1]=0

�
�
�

−−
=+−−

=
otherwisej])1,c[i1],jmax(c[i,

y[j], x[i]if11]j1,c[i
j]c[i,
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Exercise: Write the Program

1. m = length(X) // # of symbols in X

2. n = length(Y) // # of symbols in Y

3. for i = 1 to m c[i,0] = 0 // special case: Y0

4. for j = 1 to n  c[0,j] = 0 // special case: X0

Finish it
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Exercise: Create a Dynamic Program

• Design a dynamic program for knapsack 
problem.

• Input: (s1,c1), (s2,c2),…, (sn,cn),  S
• Output: find a subset X of {1,2,…,n} such that

• Hint: For i < n and k < S recursively define

maximized is c and  Ss
Xi

i
Xi

i ��
∈∈

≤

k}s and i}{1,2,...,X:cmax{k)c(i,
Xj

j
Xj

j =⊆= ��
∈∈
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DNA Sequence Reconstruction

• DNA can only be sequenced in relatively small 
pieces, up to about 1,000 nucleotides.

• By chemistry a much longer DNA sequence can be 
broken up into overlapping sequences called clones.  
Clones are 10’s of thousands of nucleotides long.

DNA

clones
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Tagging the Clones

• By chemistry the clones can be tagged by identifying 
a region of the DNA uniquely.

• Each clone is then tagged correspondingly.

DNA

clones

E      G       F  H      A    I        B   D       C

1

108
9

75

3

6

42
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Problem to Solve

• Given a set of tagged clones, find a 
consistent ordering of the tags that 
determines a possible ordering of the DNA 
molecule.

clone    tag
1. {E, G}
2. {F, G , H}
3. {A, I}
4. {C, D}
5. {E, G}
6. {A, H, I}
7. {B, D}
8.  {F, H}
9. {A, B, D, I}
10. {C, D}

input

E G F H A I B D C

output

1
2

9

43

5
7

6
8

10
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Contiguous Ordering Solutions

U = {A, B, C, D, E, F, G, H, I}
S = {{E, G}

{F, G , H}
{A, I}
{C, D}
{E, G}
{A, H, I}
{B, D}
{F, H}
{A, B, D, I}
{C, D}}

E G F H A I B D C

Contiguous ordering problem Solution

E G F H I A B D C

C D B I A H F G E

C D B A I H F G E

reversal

interchange
I and A

Alternate Solutions
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Linear Time Algorithm

• Booth and Lueker, 1976, designed an 
algorithm that runs in time O(n+m+s).
– n is the size of the universe, m is the number of 

sets, and s is the sum of the sizes of the sets.

• It requires a novel data structure called the 
PQ tree that represents a set of orderings.

• PQ trees can also be used to test whether an 
undirected graph is planar.
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PQ Trees

... ...

P node Q node leaf

Children can 
be reordered.

Children can
be reversed.

Each leaf has
a unique label.

• PQ trees are built from three types of nodes

A
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Example PQ-Tree

A

CF

E

DB

T

The frontier of T defines the ordering F(T) = FCABDE, just read
the leaves left to right.

T’ is equivalent to T if T can be transformed into T by reordering 
the children of P nodes and reversing the children of Q nodes.
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Equivalent PQ Trees

A

CF

E

DB

T

E

CF

A

DB

T’

FCABDE FEBDAC
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Orderings Defined by a PQ Tree

• Given a PQ tree T the orderings defined by T 
is 
– PQ(T) ={F(T’) : T’ is equivalent to T}

A

CF

E

DB

T There are 6 x 2 x 2 = 24 distinct
orderings in PQ(T).

Generally, if a PQ tree T has q Q 
node and p P nodes with number
of children c1, c2, ... , cp, then the
number of orderings in PQ(T) is
2q c1! c2! ... cp!. 

n! = 1 x 2 x ... x n
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PQ Tree Solution for the Contiguous 
Ordering Problem

• Input: A universe U and a set S = {S1, S2, ..., Sm} 
of subsets of U.

• Output: A PQ tree T with leaves U with the 
property that PQ(T) is the set of all orderings of U 
where each set in S is contiguous in the 
ordering.
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U = {A,B,C,D,E,F}
S = {{A,C,E}, {A,C,F}, {B,D,E}}

E F

D CB A

There are 8 orderings that are possible in keeping 
each of these sets contiguous.

Example Solution 
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PQ Tree Restriction

• Let U = {A1,A2,...,An}, S = {A1,A2,...,Ak}, and T a 
PQ tree.

• We will define a function Restrict with the 
following properties:
– Restrict(T,S) is a PQ tree.
– PQ(Restrict(T,S)) = PQ(T) intersect PQ(T’) where                

AkA1

AnAk+1
...

...

T’
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High Level PQ tree Algorithm

• Input is U = {A1,A2,...,An}, and subsets S1, S2, 
..., Sm of U.

• Initialization:
– T = P node with children A1, A2, ... , An

• Calculate m restrictions:
– for j = 1 to m do

T := Restrict(T,Sj)

• At the end of iteration k:
– PQ(T) = the set of ordering of U where each set S1, 

S2, ... , Sk are contiguous.



11

Lecture 9 - Dynamic Programming, PQ-trees 61

Marking Nodes

• Given a set S and PQ tree T we can mark 
nodes either full or partial.
– A leaf is full if it is a member of S.
– A node is full if all its children are full.
– A node is partial if either it has both full and non-

full children or it has a partial child. 
– A node is doubly partial if it has two partial 

children.
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Marks of Nodes

E FD

C

B

H

GA

Full

left partial

right partial

doubly partial

S = {A,C,F,H,I}

Mark the leaves in S full.
Bottom up mark the nodes full or partial.
The members of S will become contiguous.

I

Lecture 9 - Dynamic Programming, PQ-trees 63

Structure of the Marked PQ Tree

Key Node
possibly doubly 
partial

left partial

right partial

Full

partials with
exactly one
partial child

root
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Restrict(T,S)

• Mark the full and partial nodes from the 
bottom up. 
– In the process the marked leaves become 

contiguous.

• Locate the key node.
– Deepest node with the property that all the full 

leaves are descendents of the node.

• Restrict the key node.
– In the process of restricting the key node we will 

have to recursively direct partial nodes.
– Directing a node returns a sequence of nodes.
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Restricting a P Node with Partial Children

... ...

...

...

restrict a P node

direct then 
attach

right partial

left partial

full
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Restricting a P node
with no Partial Children

... ...

...
...

restrict a P node
full
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Restricting a Q node

... ...

restrict a Q node

...

... ......

direct then 
attach
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Directing a P Node

... ...

... ...

left direct a P node
Directing a node
produces a sequence
of nodes.
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Directing a Q Node

... ...

... ...

left direct a Q node
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Example (1)
U = {A,B,C,D,E,F,G,H,I,J}
S1 = {A,C,E,G,I}

C FB EA D G JIH E BC IA G D JHF

mark
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Example (2)
U = {A,B,C,D,E,F,G,H,I,J}
S1 = {A,C,E,G,I}

E BC IA G D JHF

restrict P node

E

B

C IA G

D JHF

special case because
no partial child.
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Example (3)
U = {A,B,C,D,E,F,G,H,I,J}
S2 = {C,D,F,G,I,J}

mark

E

B

C IA G

D JHF

E

B

C IA G

D J HF
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Example (4)
U = {A,B,C,D,E,F,G,H,I,J}
S2 = {C,D,F,G,I,J}

restrict P node

E

B

C IA G

D J HF

E

B

C IA G D J

H

F
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Example (5)
U = {A,B,C,D,E,F,G,H,I,J}
S2 = {C,D,F,G,I,J}

direct P node

E

B

C IA G D J

H

F E

B

C IA G D J

H

F
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Example (6)
U = {A,B,C,D,E,F,G,H,I,J}
S2 = {C,D,F,G,I,J}

attach 

E

B

C IA G D J

H

FE

B

C IA G D J

H

F
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Example (7)
U = {A,B,C,D,E,F,G,H,I,J}
S3 = {A,B,E,G}

mark 

E

B

C IA G D J

H

F E

B

G IA C D J

H

F
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Example (8)
U = {A,B,C,D,E,F,G,H,I,J}
S3 = {A,B,E,G}

E

B

G IA C D J

H

F

E

B

G IA C D J

H

F

restrict P node

No P node
needed here
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Example (9)
U = {A,B,C,D,E,F,G,H,I,J}
S3 = {A,B,E,G}

E

B

G IA C D J

H

F

direct Q node

E

B

G IA C D J

H

F
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Example (10)
U = {A,B,C,D,E,F,G,H,I,J}
S3 = {A,B,E,G}

E

B G

IA C D J

H

F

direct P node

E

B

G IA C D J

H

F
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Example (11)
U = {A,B,C,D,E,F,G,H,I,J}
S3 = {A,B,E,G}

E

B G

IA C D J

H

F

attach

E

B G

IA C D J

H

F
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Example (12)
U = {A,B,C,D,E,F,G,H,I,J}
S1 = {A,C,E,G,I}
S2 = {C,D,F,G,I,J}
S3 = {A,B,E,G}

E

B G

IA C D J

H

F

1
2

3
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Exercise

• Restrict with to make {A,B,D,E,G} contiguous

A CB

D FE

G IH
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Linear Number of Nodes Processed

• Let n be the size of the universe, m the 
number of sets, and s the sum of the sizes of 
the sets.
– Number of full nodes processed < 2s. 
– Number of key nodes processed = m.
– Number of partial nodes with partial children 

processed below the key node < m + n.
– Number of partial nodes with no partial children 

< 2m.
– Number of partial nodes processed above the key 

node < m + n.
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Number of Processed Nodes Amortized

Key Nodes
m

partials with
partial children

< m+n

Full
< 2s

partials with
exactly one
partial child

< m+n

root

partials with 
no partial children

< 2m

n size of universe
m number of sets
s sum of size of sets
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Partials with Partial Children Below 
the Key Node

• Amortized complexity argument.
• Consider the quantities:

– q = number of Q nodes, 
cp = number of children of P nodes.

– We examine the quantity x = q + cp 
– x is initially n and never negative.
– Each restrict of a key node increases x by at most 1.
– Each direct of a partial node with a partial child 

decreases x by at least 1.
– Since there are m restricts of a key node then there are 

most n + m directs of partials with partial children.
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Restricting a P Node with Partial Children

... ...

...

...

restrict a P node

change in q + cp is 
at most +1. 
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Restricting a P node
with no Partial Children

... ...

...
...

restrict a P node
full

change in q + cp is 
exactly +1. 
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Restricting a Q node

... ...

restrict a Q node

...

... ......

direct then 
attach

no change in q, cp
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Directing a P Node

... ...

... ...

left direct a P node change in q + cp is -1

Assume partial child
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Directing a Q Node

... ...

... ...

left direct a Q node
change in q + cp is -1
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PQ Tree Notes

• In algorithmic design only a linear number of 
nodes are ever processed.

• Designing the data structures to make the 
linear time processing a reality is very tricky.

• PQ trees solve the idealized DNA ordering 
problem.

• In reality, because of errors, the DNA 
ordering problem is NP-hard and other 
techniques are used.
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Example of Data Structure Trick

......

• Linking the children of a Q node

son daughterparentparent

brother

sister

Linking of siblings can be in any order.
Middle children don’t know parents.
End children know parents.


