CSEP 521

Applied Algorithms
Spring 2005

Dynamic Programming
Contiguous Ordering - PQ Trees

Reading

¢ Chapter 15

Lecture 9 - Dynamic Programming, PQ-trees

Outline for the Evening

« DNA

» Approximate String Matching

» Approximate String Searching

* Dynamic Progamming

* Longest Common Subsequence

» DNA reconstruction

» Contiguous Ordering and PQ-trees

Lecture 9 - Dynamic Programming, PQ-trees

DNA

« DNA is a large molecule that can be
abstractly defined as a sequence of symbols
from the set, A, C, G, T, called nucleotides.

¢ The human genome has about 3 billion
nucleotides.

— A huge percentage of the genome is shared by all
humans.

— Some of the variation makes us different.
— Some of the variation is inconsequential.
— The human genome is still being discovered.

Lecture 9 - Dynamic Programming, PQ-trees

Approximate Matching

» Two DNA sequences approximately match if
one can be transformed into the other by a
short sequence of replacements and
insertions of gaps.

* Example:

- S = AGCATG
- T = AGATCGT

» Approximate matching
-S =AG- - CATG
-T =AGATCGT -

Lecture 9 - Dynamic Programming, PQ-trees

- isagap

Applications of Approximate
Matching

DNA string alignment.

— Given two similar DNA sequences find the best
way to align them to the same length.

DNA database searching.

— Find DNA sequences that are similar to the query.
« Approximate text matching for searching.

— agrep in unix

Spell checking

— Find the words that most closely match the
misspelled word.

Lecture 9 - Dynamic Programming, PQ-trees 6

Scoring an Approximate Matching

* We need a way of scoring the quality of an
approximate matching.

A scoring function is a mapping o from

{A, C, G, T, -} to integers.

— The quantity o(x,y) is the score of a pair of
symbols, x and y.

Example:
- o(xyy) =+2if x=y and x in {A,C,G, T}
— o(xyy) =-1otherwise

Lecture 9 - Dynamic Programming, PQ-trees

Scoring Example

Example:

-8 =AG- - CATG

-T =AGATCGT -

Score =4x2+4x(-1)=4

Is this the best match between the two strings
with this scoring function?

— S = AGCATG
— T = AGATCGT
Lecture 9 - Dynamic Programming, PQ-trees 8

Approximate String Matching
Problem

e Input: Two strings S and T in an alphabet X
and a scoring function o.
e Output: Two strings S’ and T’ in the alphabet
>’ = % union {-} with the properties:
— S =S’ with the -’'s removed.
— T =T with the -'s removed.
—-IST=1T
S

— The score Zc(S'[i],T'[i]) is maximized.
i=1

Lecture 9 - Dynamic Programming, PQ-trees 9

Algorithms for Approximate String
Matching
* O(mn) time and storage algorithm (using

dynamic programming) invented by
Needleman and Wunch, 1970.

e Fischer and Paterson, 1974, invented a very
similar algorithm for computing the minimum
edit distance between two strings.

Lecture 9 - Dynamic Programming, PQ-trees 10

Dynamic Programming for
Approximate String Matching

* Assume S has length m and T has length n.

Foralliandj,0<i<mand0<j<n,we find

the maximum score for the sequences S[1..i]

and T[1..j].

¢ The “dynamic program” fills in a (m+1)x(n+1)
matrix M in increasing order of i and j with
these maximum values.

* Once the dynamic program has completed
we can recover the optimal string S’ and T’
from the matrix M.

Lecture 9 - Dynamic Programming, PQ-trees 11

Max Score Recurrence

» Define M[i,j] = maximum score for a match
between S[1..i] and T[1..j].

M[i,0] = ZO(S[k],—) match of S[1..i] with empty string
k=1

MI[O, j] = 20(—,T[k]) match of T[1..j] with empty string
MI[i, j] = max{
M[i-1,j-1]+o(S[i. T[),
M[i-1,j]+0o(S[i].-),
M[i,j-1]+o (= T0D}

Lecture 9 - Dynamic Programming, PQ-trees 12

Dynamic Program Initialization
scoring function
AGCATG +2 for exact match

S
T AGATCGT -1 otherwise

01234567
AGATCGT
1]-2]-3]-4]5]-6]-7

sSlalslo[s]s]o

oUhwWN RO
QO->00>

Lecture 9 - Dynamic Programming, PQ-trees

The Dynamic Programming Pattern

d=a+2ifs=t
a b =a -1 otherwise
|
v h=c -1
s c — x
v=b -1

x = max(d, h, v)

Lecture 9 - Dynamic Programming, PQ-trees 14

Dynamic Program Example (1)

scoring function

S = AGCATG +2 for exact match
T = AGATCGT -1 otherwise
012

34567
GATCGT
2|-3[-a]-5]-6[-7

oUhwWN RO
QO->00>

Lecture 9 - Dynamic Programming, PQ-trees

Dynamic Program Example (2)

scoring function

S = AGCATG +2 for exact match
T = AGATCGT -1 otherwise
01234567
AGATCGT
0 0|-1|-2|-3|-4|-5|-6|-7
1 AFL]2]1
2 G|2|1
3 C|3
4 A4
5T|5
6 G|-6
Lecture 9 - Dynamic Programming, PQ-trees 16

Dynamic Program Example (3)

scoring function

S = AGCATG +2 for exact match
T = AGATCGT -1 otherwise
01234567
AGATCGT
-11-2|-3|-4|-5|-6|-7
2|10
14
0

oA wWN RO
QO->00>

Lecture 9 - Dynamic Programming, PQ-trees

Dynamic Program Example (4)

_ scoring function
S = AGCATG +2 for exact match

T = AGATCGT -1 otherwise
01

RN U G R e B

glwlw|o|db|&d| O O

2
G
-2
1
4
3
2
1
0

BRNBEENEN
WA O W WOk > w
N (BININSIAAD
ololw|(rr[L&G|O o

RGNS

oUhwWNREO
O->00>

Lecture 9 - Dynamic Programming, PQ-trees 18

Dynamic Program Example (5)

S =
T =

U WNEO

scoring function

ACCATG +2 for exact match
AGATCGT -1 otherwise
01234567
AGATCGT
0|-1|-2|-3|-4|-5|-6|-7
Al-1/2]|1]0|-1|-2|-3|-4
Gl|-2|1]4|3|2|1|0]|1
C|-3|0|3|3|2|4|3|2
Al-4l-1|2|5|4|3|3|2
T|5[-2]1]4]7]6]5]5 /m:fcfﬂc;’grefo'any
G|-6|-3|/0|3|6|6|8|7

Lecture 9 - Dynamic Programming, PQ-trees

Dynamic Programming Order

By row

fori=1tomdo
forj=1tondo
M[ij] == ...

By column
forj=1tondo

fori=1tomdo
M[i,j] == ...

Which order is best?

Lecture 9 - Dynamic Programming, PQ-trees 20

How to Find the Matching

* Tofind S’ and T' we build a matching graph.

t

X —> T

x=a+2ifs=t

=a -1 otherwise ?

x=c-17?

x=b -17?

If the answer is yes,
include the corresponding edge.

Lecture 9 - Dynamic Programming, PQ-trees

Computing the Matching Graph (1)

ouUhhwWNRERO
O-Ea>00>

Sl o b|d|N
i

01

[o N

alv v e sy]H~

N
W sl lw|wlo|h (> W
o lN I~ ININIASA D
oo |w|d|Fr |0 ‘I"‘Om
o O |w|w|o|dh|&d

A

1
~

Lecture 9 -

Dynamic Programming, PQ-trees 22

Computing the Matching Graph (2)

oOUhWNRO
OQ—=a>00 >

01234567
AGATCGT
0|-1|-2]-3|-4|5]|6|7
al2)1|o|-1]-2|-3|4
2|14 |3|2|1|0]1
3lol3|3|2]4|3]2
4|12 |5|4(3|3]2
5|2/1(4|7]6|5]5
*®|
6/-3/0[3|6|6|847

Lecture 9 - Dynamic Programming, PQ-trees

Computing the Matching Graph (3)

ouhhwWNRERO
O-Ea>00>

01234567
AGATCGT

0|-1|-2|-3|-4|-5|-6]|-7

1|{2(1(0|-1|-2|-3|-4

2114|3210/

30332 (4|3]2

4111254 (3|3]2

512|114 7"6K 5|5

6|-3/0[3|6|6|8%7

Lecture 9 - Dynamic Programming, PQ-trees 24

Computing the Matching Graph

012345617

AGATCGT
0 ol1/-2]|-3/4|5|6|7
1 Altll2[1|o]1]|2|3]4
2 G|2|1|4]3]2|1]0]1
3C-30‘3K32432
4 Alaja|2|5|4(3]3]2
5 Tls|2|1|a]796]5]5
6 Gls|a|o|z|6]|6|etr

Lecture 9 - Dynamic Programming, PQ-trees

Computing the Matching Path

01234567
Matching
AGATCGT Path
0|-1|-2|3|-4|5|6|7 ©9
0 x (1.1
1A.1 2|1]0|-1|-2|-3|-4 2,2)
(3.2
2 gl2lt]g]e|2]r]o]n 4.3)
i 5,4
3 cl?of33zleisle) BY
4 Al 1]2]5]43)32 (6,6)
5 T|5|2|1|4]716]5]5 @7
Pl There can be
6 G|6|3|0|3|6|6|877 multiple paths

Lecture 9 - Dynamic Programming, PQ-trees

26

Algorithm to find Matching

* Follow any path in the matching graph
starting at (m,n).
e The path will end up at (0,0).

» Output each pair (i,) visited to make a list of

pairs forming a matching path.

Lecture 9 - Dynamic Programming, PQ-trees

Computing the Matching

p = length of the matching path P
i=1;
=1
fork=1to p do
if P[K].first = P[k-1].first then
S'k] :=-;
else
S'K] = S[il;
=i+l
if P[k].second = P[k-1].second then
Tk =-;
else
T = T
=ity

Lecture 9 - Dynamic Programming, PQ-trees

0,0

WNOUDWNE OT

firs

second

®

28

O~NOUAWNEFOT

Creating the Matching

123456
S=AGCATG
T=AGATCGT
S=AGCAT- G-
T=AG- ATCGT

Score=5x2 +3x(-1)=7

Lecture 9 - Dynamic Programming, PQ-trees

Example of Multiple Paths

012345
CATGT

0 o1|2|-3/4|5
1A-11‘-11,\o-1-2
2 Cl2l1|o|o 1|2
3G-30\%-1$1
4 Clajafa]a|11
5 T s|22|1]0]3
6 Gls|s|a|o|sd2

Lecture 9 - Dynamic Programming, PQ-trees

Multiple matching
with same score

- ACGCTG
CATG-T-

ACGC
- CA

——
[oNa]

T

ACGC
--CA T

-
[N

score=3x2+4x(-1)

=2

30

Exercise

» Find an optimal approximate matching for
-AGTTC
-ACTATC

0

B e
NO N
bl w
NS
el
50O

ANANEE

aBnwWN RO
O—4-40>

Lecture 9 - Dynamic Programming, PQ-trees 31

Approximate String Searching

¢ Input: Query string Q and target string T in an

alphabet X and a scoring function g, and a
minimum score r.

Output: The set of k such that for some i < k
score(Q,T[i..k]) > r. Thatis, an approximate
match of some substring of T that ends at
index k has a score of at least r.

— score(X,Y) is the maximum score for all matchings
between X and Y.

Lecture 9 - Dynamic Programming, PQ-trees 32

Search Algorithm
« We change the previous dynamic program
slightly.

MIi,0] = 3" o(QIK],-)

k=1
MI[0,j]=0 We don't care where the match begins in T
MIi, j] = max{

M[i-1,j-1]+0o(Q[i], (i),

M[i-1,j]+0(Q[i],-),
M[i,j=1]+o(= T}

Choose all k such that M[m,k] > r where m is the length of Q.

Lecture 9 - Dynamic Programming, PQ-trees 33

Example of Approximate Matching

Q = AGTA (=5 32 forexact match
T = AGATCGTAGT -1 otherwise

012345678910
AGATCGTAGT
0 oj0o|o0o|0Of0O|O|OfO|O|O|O
1 Alt[2]1]2]1]o]1]1][2]1]o0
2 gl-2[1]4]3]|2]1]2]1]1]4]3
3 7|-3[0[3|3|5]4[3]a[3]|3]6
4 A|-4|-1/2|5|4|4|3|3|6(5|5

outputis 3, 8, 9, 10

Lecture 9 - Dynamic Programming, PQ-trees 34

Recovering the Matchings

012345678910
AGATCGTAGT
o [o]JoJoJoJoJo]oJo]o]o]o
Q= AGTA 1 altf2]1]2t1t0]a]1]2]1]0
T - AcAToGTAGT 2 G|2[1l4[3]2[1]2]1]1]4]3
3 T]3/0[3]3]5]4[3]4)3]|3]6
4 Al-4l1]2]5]ala|3]3]645[5
Q AGTA Q A -GTA
T AGA1-3 T ATCGTAG 3-9
Q A--GTA Q AGTA
T ATCGTA 3-8 T AGT- 8-10
Lecture 9 - Dynamic Programming, PQ-trees 35

Notes on Approximate Matching

Time complexity O(mn)
Storage complexity O(mn)

— Storage in the dynamic program can be reduced
to O(m+n) by just keeping the frontier.

— Recovering the matching can be done in time
O(m-+n) cleverly.

Lecture 9 - Dynamic Programming, PQ-trees 36

FASTA and BLAST

Two of best known approximate search algorithms for
DNA database searching

Both use the idea of exclusion search

— Parameter k for number of possible errors

— Exact search on k+1 substrings. At least one must succeed

k=4 search string

s I ——

1. Find all the exact matches for at least one of the strings
2. For each such match do an approximate matching

Lecture 9 - Dynamic Programming, PQ-trees 37

Example
k=2

AGTTATGCC —— AGT TAT GCC

TTAGACGTTCATGACCTAGTTTAGCTATGAGAGTTATG
Dynamic Programming O(mn)

Exclusion Search O(sm? + n)

m search string length

n database length
s number of successes in exact search

Lecture 9 - Dynamic Programming, PQ-trees 38

Dynamic Programming

A strategy for designing algorithms.

A technique, not an algorithm.

The word “programming” is historical and predates
computer programming.

Ideal when the problem breaks down into recurring
small sub-problems.

Lecture 9 - Dynamic Programming, PQ-trees 39

Longest Common Subsequence

« Longest common subsequence (LCS) problem:

— Given two sequences x[1..m] and y[1..n], find the longest
subsequence which occurs in both (not necessarily
contiguous).

— Example:x=ABCBDAB,y=BDCABA
— B Cand A A are both subsequences of both
« What is the LCS? BCAB, BCBA

— Brute-force algorithm: For every subsequence of x, check if
it's a subsequence of y

« How many subsequences of x are there?
« What will be the running time of the brute-force alg?

Lecture 9 - Dynamic Programming, PQ-trees 40

LCS Algorithm

Brute-force algorithm: 2™ subsequences of x
each takes O(n) to search iny: O(n 2™)

We can do better: for now, let's only worry
about the problem of finding the length of the
LCS

— When finished we will see how to backtrack from
this solution back to the actual LCS.

Notice LCS problem has optimal substructure
— Subproblems: LCS of pairs of prefixes of x and y

Lecture 9 - Dynamic Programming, PQ-trees a1

Finding LCS Length

 Define c[i,j] to be the length of the LCS of
X;=x[1..i and Y;=y[1..]
— What is the length of LCS of x and y?

c[m,n]
e Theorem:
ofi.j] = cli-1,j-1]+1 if x[i] =y,

max(c[i,j—1],c[i-1,j]) otherwise

Lecture 9 - Dynamic Programming, PQ-trees a2

LCS Recurrence

o [cli-1,j-1]+1 if x{i] = y[il,
cli]l '{ max(cfi,j-1],ci-1,jl) otherwise

Proof: When calculating cfi,j], there are two
cases to consider:

« First case: x[i]=y[j]: one more symbol in
strings X and Y matches, so the length of
LCS X; and Y; equals to the length of LCS of
smaller strings X; and Y;, , plus 1.

Lecture 9 - Dynamic Programming, PQ-trees 43

LCS Recurrence
o 2 [ei-Li-1+1 if x[i] = y[i],
021 max(eij-1].cfi-1.j)) otherwise

» Second case: X[i] # y[j]

» As symbols don’t match, our solution is not
improved, and the length of LCS(X;, Y)) is the
maximum of LCS(X;, Y;;) and LCS(X.1,Y))

Why not just take the length of LCS(X;.4, Y;) ?

Lecture 9 - Dynamic Programming, PQ-trees a4

LCS recursive solution
i :{c[i—l,j—-lh]+1 o if x[i] =>/[j],
max(c[i,j—1],c[i-1,]]) otherwise
Why not just take the length of LCS(X, Y4) ?
Answer: Let x=abc y=db
c[3,2]=max(c[3,1], c[2,2])=max(0,1)=1

c[3,2]# c[2,1]=0

Lecture 9 - Dynamic Programming, PQ-trees 45

Exercise: Write the Program

1. m = length(X) // # of symbols in X

2. n =length(Y) // # of symbols in Y
3.fori=1tom c[i,0]=0 // special case: Y,
4. forj=1ton ¢[0,]=0 // special case: X,
Finish it

Lecture 9 - Dynamic Programming, PQ-trees a6

Exercise: Create a Dynamic Program

» Design a dynamic program for knapsack
problem.

e Input: (S4,€y), (S2,C2),--, (Sp,C), S
e Output: find a subset X of {1,2,...,n} such that
>'s,<S and) c, is maximized

()4 ()4
e Hint: Fori<n and k < S recursively define

c(i,k) =max{} c;: X0{1,2,...itand Y s, =k}

jox jOX

Lecture 9 - Dynamic Programming, PQ-trees 47

DNA Sequence Reconstruction

* DNA can only be sequenced in relatively small
pieces, up to about 1,000 nucleotides.

* By chemistry a much longer DNA sequence can be
broken up into overlapping sequences called clones.
Clones are 10’s of thousands of nucleotides long.

DNA

—_— clones

Lecture 9 - Dynamic Programming, PQ-trees a8

Tagging the Clones

» By chemistry the clones can be tagged by identifying
a region of the DNA uniquely.

E G FH A1l BD C
DNA
. 2 3 4
5 6 7
8 10 clones
9

» Each clone is then tagged correspondingly.

Lecture 9 - Dynamic Programming, PQ-trees 49

Problem to Solve

¢ Given a set of tagged clones, find a
consistent ordering of the tags that
determines a possible ordering of the DNA
molecule.

clone tag

{E, G} output

{F, G, H}

{A 1} EGFHAIBDC

{C, b}

{E, G}

{A, H, 1}

{B, D}

{F, H}

9. {A,B,D1I}

10. {C, D}

input

ONOGOAWNE

Lecture 9 - Dynamic Programming, PQ-trees

50

Contiguous Ordering Solutions

Linear Time Algorithm

« Booth and Lueker, 1976, designed an
algorithm that runs in time O(n+m+s).
— nis the size of the universe, m is the number of
sets, and s is the sum of the sizes of the sets.
It requires a novel data structure called the
PQ tree that represents a set of orderings.

« PQ trees can also be used to test whether an

undirected graph is planar.

Lecture 9 - Dynamic Programming, PQ-trees

52

Contiguous ordering problem Solution
U={A,B,C,D,E FG,H,1I} EGFHAIBDC
S={E G} - - =

{F. G, H} - =
A
{C, b})
{E, G} Alternate Solutions
{AH, 1})
{8,0} erehande £ GEHIABDC
{F, H}
{A,B,D, I} reversal CDBIAHFGE
{C. b}

CDBAIHFGE

Lecture 9 - Dynamic Programming, PQ-trees 51
PQ Trees

* PQ trees are built from three types of nodes

P node Q node leaf

Children can Children can Each leaf has
be reordered. be reversed. a unique label.
Lecture 9 - Dynamic Programming, PQ-trees 53

Example PQ-Tree

The frontier of T defines the ordering F(T) = FCABDE, just read
the leaves left to right.

T'is equivalent to T if T can be transformed into T by reordering
the children of P nodes and reversing the children of Q nodes.

Lecture 9 - Dynamic Programming, PQ-trees

54

Equivalent PQ Trees

FCABDE FEBDAC

Lecture 9 - Dynamic Programming, PQ-trees 55

Orderings Defined by a PQ Tree

* Given a PQ tree T the orderings defined by T
is
— PQ(T) ={F(T") : T' is equivalent to T}

There are 6 x 2 x 2 = 24 distinct
orderings in PQ(T).

Generally, if a PQ tree T has q Q
node and p P nodes with number
of children c,, c,, ..., Cor then the
number of orderings in PQ(T) is
29cit ¢yl .yl

n=1x2x..xn

Lecture 9 - Dynamic Programming, PQ-trees 56

PQ Tree Solution for the Contiguous
Ordering Problem
e Input: A universe Uand asetS ={S,, S,, ..., S;;}
of subsets of U.

¢ Output: A PQ tree T with leaves U with the
property that PQ(T) is the set of all orderings of U
where each set in S is contiguous in the
ordering.

Lecture 9 - Dynamic Programming, PQ-trees 57

Example Solution

There are 8 orderings that are possible in keeping
each of these sets contiguous.

Lecture 9 - Dynamic Programming, PQ-trees 58

PQ Tree Restriction

o LetU={ALA,,...Al, S={ALA,...,AJ,and T a
PQ tree.

* We will define a function Restrict with the
following properties:
— Restrict(T,S) is a PQ tree.
— PQ(Restrict(T,S)) = PQ(T) intersect PQ(T’) where

Lecture 9 - Dynamic Programming, PQ-trees 59

High Level PQ tree Algorithm

e Inputis U ={A;,A,,....A.}, and subsets S;, S,,
.oty Sy of U,
« Initialization:
— T =P node with children A, A,, ... , A,
» Calculate m restrictions:
—forj=1tomdo
T := Restric(T,S)
« At the end of iteration k:

— PQ(T) = the set of ordering of U where each set S,
S,, ..., Sy are contiguous.

Lecture 9 - Dynamic Programming, PQ-trees 60

10

Marking Nodes

* Given a set S and PQ tree T we can mark
nodes either full or partial.
— Aleafis full if it is a member of S.
— A node is full if all its children are full.

— Anode is partial if either it has both full and non-
full children or it has a partial child.

— A node is doubly partial if it has two partial
children.

Lecture 9 - Dynamic Programming, PQ-trees 61

Marks of Nodes

Mark the leaves in S full.

Bottom up mark the nodes full or partial. I:I °
The members of S will become contiguous. Full

S={A,C.FH,} .:‘ O

left partial

=0

right partial

Eoe

doubly partial

Lecture 9 - Dynamic Programming, PQ-trees 62

Structure of the Marked PQ Tree

partials with root
exactly one

partial child

Key Node
possibly doubly
partial

right partial

left partial

Full

Lecture 9 - Dynamic Programming, PQ-trees 63

Restrict(T,S)

« Mark the full and partial nodes from the
bottom up.

— In the process the marked leaves become
contiguous.

¢ Locate the key node.

— Deepest node with the property that all the full
leaves are descendents of the node.

« Restrict the key node.

— In the process of restricting the key node we will
have to recursively direct partial nodes.

— Directing a node returns a sequence of nodes.

Lecture 9 - Dynamic Programming, PQ-trees 64

Restricting a P Node with Partial Children

left partial
right partial

fb}l/ l restrict a P node
T e

=22
A

Lecture 9 - Dynamic Programming, PQ-trees 65

—
direct then / A

attach

Restricting a P node
with no Partial Children

o l restrict a P node

full

Lecture 9 - Dynamic Programming, PQ-trees 66

11

Restricting a Q node Directing a P Node

<=

Directing a node

l restrict a Q node
| left direct a P node l produces a sequence
A - of nodes.
—_ — A
EIUTIUN " T s
direct then
68

Lecture 9 - Dynamic Programming, PQ-trees

attach . .
Lecture 9 - Dynamic Programming, PQ-trees 67
Directing a Q Node Example (1)
U={AB,C,D,EF,G,H,IJ}
— S, ={ACEG,I}
l left direct a Q node
AALALAA
Lecture 9 - Dynamic Programming, PQ-trees 69 Lecture 9 - Dynamic Programming, PQ-trees 70
Example (2) Example (3)
U={AB,C,DEFG,H,ILJI} U={AB,C,DEFG,H,IJI}
S, ={ACEG,} S, ={C,D,F,G,1,J}

Q mark N
—

DEE[EE é\n o1 81

restrict P node
—

special case because
no partial child.

Lecture 9 - Dynamic Programming, PQ-trees 72

Lecture 9 - Dynamic Programming, PQ-trees

Example (4)

U={AB,CD,EFGH,IJ}
S, ={C.D,F.G 1.3}

> restrict P node
AL
E (B][H]
A E\J
. CllG

Lecture 9 - Dynamic Programming, PQ-trees

Example (5)

U={AB,CDEFGH,1J}
S, ={C.D,F.G,1.3}

direct P node
EALRELLS

Lecture 9 - Dynamic Programming, PQ-trees

74

Example (6)

U={AB,CD,EFGH,IJ}
S, ={C.D,F.G 1.3}

attach

Lecture 9 - Dynamic Programming, PQ-trees

Example (7)

U={AB,CDEFGH,1J}
S; = {A,B,E,G}

Lecture 9 - Dynamic Programming, PQ-trees

76

Example (8)

U={AB,CD,EFGH,IJ}
S;={ABEG}

restrict P node
—

No P node
needed here

Lecture 9 - Dynamic Programming, PQ-trees

Example (9)

U={A,B,C,D,EF,GH,LIJ}
S; ={AB,E,G}

direct Q node
=

Lecture 9 - Dynamic Programming, PQ-trees

78

13

Example (10)

U={AB,CDEFGH,IJ}

S;={AB,E,G}
O direct P node O
<

RN

Lecture 9 - Dynamic Programming, PQ-trees 79

Example (11)

U={AB,CDEFGH,1J}
S; = {A,B,E,G}

s snoss

Lecture 9 - Dynamic Programming, PQ-trees 80

Example (12)

U ={A,B,C,D,EF,G,H,1,J}
S, ={ACEG,l}
S, ={C.D,F,G,,3}
S, = {ABE,G}

Lecture 9 - Dynamic Programming, PQ-trees 81

Exercise

¢ Restrict with to make {A,B,D,E,G} contiguous

®
°
i

Lecture 9 - Dynamic Programming, PQ-trees 82

Linear Number of Nodes Processed

e Let n be the size of the universe, m the
number of sets, and s the sum of the sizes of
the sets.

— Number of full nodes processed < 2s.
— Number of key nodes processed = m.

— Number of partial nodes with partial children
processed below the key node <m + n.

— Number of partial nodes with no partial children
<2m.

— Number of partial nodes processed above the key
node <m+n.

Lecture 9 - Dynamic Programming, PQ-trees 83

Number of Processed Nodes Amortized

partials with

exactly one

partial child
<m+n

root

Key Nodes

n size of universe
m number of sets

m

s sum of size of sets partials with
partial children
<m+n
partials with
Full no partial children
£2s <2m
Lecture 9 - Dynamic Programming, PQ-trees - 84

14

Partials with Partial Children Below
the Key Node

* Amortized complexity argument.
¢ Consider the quantities:
— = number of Q nodes,
cp = number of children of P nodes.
— We examine the quantity x =q + cp
— x s initially n and never negative.
— Each restrict of a key node increases x by at most 1.
— Each direct of a partial node with a partial child
decreases x by at least 1.

— Since there are m restricts of a key node then there are
most n + m directs of partials with partial children.

Lecture 9 - Dynamic Programming, PQ-trees 85

Restricting a P Node with Partial Children

l restrict a P node

O change in q + cp is

_m at most +1.
R

Lecture 9 - Dynamic Programming, PQ-trees

86

Restricting a P node
with no Partial Children

o l restrict a P node

kh

Lecture 9 - Dynamic Programming, PQ-trees

change inq+cpis
exactly +1.

87

Restricting a Q node

restrict a Q node l

no change in g, cp

—_— <

direct then /

attach

Lecture 9 - Dynamic Programming, PQ-trees 88

Directing a P Node

<=

Assume partial child

l left direct a P node change inq +cpis -1

<=

A

Lecture 9 - Dynamic Programming, PQ-trees 89

AADA A

Directing a Q Node

<

l left direct a Q node changeinq +cpis -1

Lecture 9 - Dynamic Programming, PQ-trees %

15

PQ Tree Notes

In algorithmic design only a linear number of
nodes are ever processed.

Designing the data structures to make the
linear time processing a reality is very tricky.
PQ trees solve the idealized DNA ordering
problem.

In reality, because of errors, the DNA
ordering problem is NP-hard and other
techniques are used.

Lecture 9 - Dynamic Programming, PQ-trees o1

Example of Data Structure Trick

¢ Linking the children of a Q node

son parent parent daughter
o5 brother Linking of siblings can be in any order.

Middle children don’t know parents.

o
< sister End children know parents.

Lecture 9 - Dynamic Programming, PQ-trees 92

16

