CSEP 521

Applied Algorithms
Spring 2005

Dynamic Programming
Contiguous Ordering - PQ Trees

Reading

 Chapter 15

Lecture 9 - Dynamic Programming, PQ-trees

Outline for the Evening

DNA

Approximate String Matching
Approximate String Searching
Dynamic Progamming

_ongest Common Subseguence
DNA reconstruction

Contiguous Ordering and PQ-trees

Lecture 9 - Dynamic Programming, PQ-trees

DNA

« DNA is a large molecule that can be
abstractly defined as a sequence of symbols
from the set, A, C, G, T, called nucleotides.

 The human genome has about 3 billion

nucleotides.

— A huge percentage of the genome is shared by all
humans.
— Some of the variation makes us different.

— Some of the variation is inconsequential.
— The human genome is still being discovered.

Lecture 9 - Dynamic Programming, PQ-trees

Approximate Matching

 Two DNA sequences approximately match if
one can be transformed into the other by a
short sequence of replacements and

Insertions of gaps.

e Example:
— S = AGCATG
— T = AGATCGT

e Approximate matching
-S = AG- - CATG
-T =AGATCGT -

Lecture 9 - Dynamic Programming, PQ-trees

- iIsagap

Applications of Approximate
Matching

DNA string alignment.

— Given two similar DNA sequences find the best
way to align them to the same length.

DNA database searching.
— Find DNA sequences that are similar to the query.

Approximate text matching for searching.
— agrep in unix
Spell checking

— Find the words that most closely match the
misspelled word.

Lecture 9 - Dynamic Programming, PQ-trees

Scoring an Approximate Matching

 We need a way of scoring the guality of an
approximate matching.

e A scoring function is a mapping ¢ from
{A, C, G, T, -}? to integers.

— The gquantity a(X,y) is the score of a pair of
symbols, x and y.

e Example:

— o(x)y) =+2ifx=y and x in {A,C,G, T}
— 0o(x,y) =-1 otherwise

Lecture 9 - Dynamic Programming, PQ-trees

Scoring Example

e Example:
-S = AG- - CATG
-T =AGATCGT -
e Score=4x2+4x(-1) =4

* |s this the best match between the two strings
with this scoring function?
— S = AGCATG
— T = AGATCGT

Lecture 9 - Dynamic Programming, PQ-trees

Approximate String Matching
Problem

e |nput: Two strings S and T in an alphabet
and a scoring function o.

e Output: Two strings S’ and T’ in the alphabet
2’ = 2 union {-} with the properties:
— S = S’ with the -'s removed.
— T =T with the -’s removed.
- [S'] =T
S
— The score ZU(S'[i],T' [']) is maximized.
=1

Lecture 9 - Dynamic Programming, PQ-trees

Algorithms for Approximate String
Matching

 O(mn) time and storage algorithm (using
dynamic programming) invented by
Needleman and Wunch, 1970.

e Fischer and Paterson, 1974, invented a very
similar algorithm for computing the minimum
edit distance between two strings.

Lecture 9 - Dynamic Programming, PQ-trees

10

Dynamic Programming for
Approximate String Matching

Assume S has length m and T has length n.

Foralliand},0<i<mandO<j<n, we find
the maximum score for the sequences S[1..1]
and T[1..]].

The “dynamic program” fills in a (m+21)x(n+1)
matrix M In increasing order of | and | with
these maximum values.

Once the dynamic program has completed
we can recover the optimal string S’and T’
from the matrix M.

Lecture 9 - Dynamic Programming, PQ-trees 11

Max Score Recurrence

e Define MJ[i,J] =

maximum score for a match

between S[1..i] and T[1..]].

M[i,0] = ZU(S[k],_) match of S[1..i] with empty string
k=1

|
MIO, |] = ZG(—,T[k]) match of T[1..j] with empty string
k=1

MII, J] = max{
M[i-1,j-1]+o(S[i], T[],
M[i-1,)]+o(S[i],-),
MIi, j=1]+o(= Th])}

Lecture 9 - Dynamic Programming, PQ-trees 12

Dynamic Program Initialization

S
-

OO0l wWwpNDPEO

ACCATG e

AGATCGT -1 otherwise
01234567

AGATCGT

0(-1|-2|-3|-4|-5|-6/|-7

A -1

G|-2

C|-3

A | -4

T (-5

G|-6

Lecture 9 - Dynamic Programming, PQ-trees 13

The Dynamic Programming Pattern

d=a+2 ifs=t
a b =a -1 otherwise
|
v h=c -1
S C T X
v=Db -1

X = max(d, h, v)

Lecture 9 - Dynamic Programming, PQ-trees 14

Dynamic Program Example (1)

S
-

OO0l wWwpNDPEO

ACCATG e

AGATCGT -1 otherwise
01234567

AGATCGT

0(-1|-2|-3|-4|-5|-6/|-7

Al-l]2

G|-2

C|-3

A | -4

T1|-5

G|-6

Lecture 9 - Dynamic Programming, PQ-trees 15

Dynamic Program Example (2)

S
-

OO0l wWwpNDPEO

scoring function

AGCATG +2 for exact match

AGATCGT -1 otherwise
01234567

AGATCGT

0(-1|-2|-3|-4|-5|-6/|-7

Al-l2)1

G|l2|1

C|-3

A | -4

T1|-5

G|-6

Lecture 9 - Dynamic Programming, PQ-trees 16

Dynamic Program Example (3)

S
-

OO0l wWwpNDPEO

scoring function

ALATG +2 for exact match

AGATCGT -1 otherwise
01234567

AGATCGT

0|-1/-2|-3|-4|-5|-6|-7

Al-112[1]0

G|l-2/1|4

C|-3|0

A -4

T (-5

G|-6

Lecture 9 - Dynamic Programming, PQ-trees 17

Dynamic Program Example (4)

S
-

OO0l wWwpNDPEO

scoring function

ALATG +2 for exact match
AGATCGT -1 otherwise
01234567
AGATCGT
0|-1(-2|-3|-4|-5|-6|-7
Al-1/2]1]0/|-1|-2|-3|-4
Gl-2|1(4|3|2|1|0]|-1
C|-3|0|3|3|2[4/3]|2
Al-4/-112|5|4|3[3|2
T|-5/-2/1|4|7|6]|5
G|-6/-3]0|3|6|6

Lecture 9 - Dynamic Programming, PQ-trees 18

Dynamic Program Example (5)

OO0l wWwpNDPEO

scoring function

AGCATG +2 for exact match
AGATCGT -1 otherwise
012345¢67
AGATCGT
0|-1/-2|-3|-4|-5|-6|-7
A-12 1/01(-1(-2/-3|-4
Gl-2/1]4|3|2/1]0]|-1
Cl|-3/013(3|2|4|3|2
Al-4l-1|2|5]4]3]3]2
520112716 515 Maxsc_:oreforany
. Mmatching
G|-6/-3|0[3|6|6|8|7

Lecture 9 - Dynamic Programming, PQ-trees 19

Dynamic Programming Order

By row
fori=1tomdo
forj=1tondo
M[i,j] == ...

By column
forj=1tondo
fori=1tomdo
M[i,j] := ...

By diagonal

Which ord

er is best?

Lecture 9 - Dynamic Programming, PQ-trees

20

How to Find the Matching

e To find S’ and T’ we build a matching graph.

X=a+2 ifs=t
a b =a -1 otherwise ?
?
| Xx=c -17
S C +«— X
X=b -17?

If the answer is yes,
Include the corresponding edge.

Lecture 9 - Dynamic Programming, PQ-trees 21

Computing the Matching Graph (1)

01234567

8 7

)
2
1
4
3
6
6

AGATCGT

S| 9|l N ||~ ©
Ml ol oo m|w| | ™
Nl A | x| M| N | | O
— | N Hd o d | N | ™

22

Lecture 9 - Dynamic Programming, PQ-trees

Computing the Matching Graph (2)

01234567

8 7

AGATCGT

O | N+ | < | ™ 6\6
S| 9|l N ||~ ©
Ml ol oo m|w| | ™
Nl A | x| M| N | | O
Al |l 9]l o]l 9| N | ™

23

Lecture 9 - Dynamic Programming, PQ-trees

Computing the Matching Graph (3)

01234567

AGATCGT

el A L o VI O VA I To B I
© M ol m | om| v | oo
x|
I | N | q | < | n| © | ©
S| 9|l N ||~ ©
Mol mo | m|lw || m
N | Aq | | 0| N — | O
—i o —] ®) — [\ o

24

Lecture 9 - Dynamic Programming, PQ-trees

Computing the Matching Graph

01234567

AGATCGT

el 2 v o VI N I Vo TN I O
© M ol m | om| v | oo
x|
I | N | q | < | n| © | ©
NN | A NN~ ©
X
M ol m M| || m
X
N | H | e | N | | O
—i o\ — o 1__ (V| o™

25

Lecture 9 - Dynamic Programming, PQ-trees

Computing the Matching Path

01234567 h
Matchin

GT

i (0,0)
(1,1)

0)

3

3

T
-7
-4 (2,2)
-1
2
2
5

@
@ | 2>

o

(3.2)
(4,3)
(5.4)
(5,5)
(6.6)
(6,7)

C
-2
-2
1
4
3

B

<4—

(@))

L4
6

A T
-1 -4
2 -1
1 2
0 2
-1 4
-2 7
-3 6

O |, [N | W ||

6
3
5
8

OO WNERO
OQ-a>002>

o |la A |lw [N,
w| bl w|w|o

47 There can be
multiple paths

Lecture 9 - Dynamic Programming, PQ-trees 26

Algorithm to find Matching

* Follow any path in the matching graph
starting at (m,n).
 The path will end up at (0,0).

e Output each pair (i1,)) visited to make a list of
pairs forming a matching path.

Lecture 9 - Dynamic Programming, PQ-trees

27

Computing the Matching

p = length of the matching path P
| :=1;
] =1,
fork=1topdo
If P[K].first = P[k-1].first then

Sk] =-;
else
S'[k] == SiJ;
=1+ 1;
If P[k].second = P[k-1].second then
T'K] :=-;
else
T[] := TOl;
j=)+ 1

Lecture 9 - Dynamic Programming, PQ-trees

(0,0
(1,1)
(2,2)
(3.2)
(4,3)
(5.4)
(5.5)
(6.6)
(6.7)

/

first second

O~NOUINWNEFOT

28

LO~NO O~ WNEFL,OT

(0,0

(1,1)

(2,2)

(3.2)

(4,3)

(5.4)

(5,5)

(6.6)

(6.7)

Creating the Matching

123456
S=AGCATSG
T=AGATCGT
S=AGCAT- G-
T"'=AG- ATCGT

Score=5x2 +3x(-1)=7

Lecture 9 - Dynamic Programming, PQ-trees 29

OO WNERO
Q000>

Example of Multiple Paths

012345
CATGT
0«-1|-2|-3|-4|-5
%k
1 -1 0|-1|-2
SEIE
2, 1, 0 0,]-1]-2
3l0|0]-1]2]|1
x4 3
401111]1
Aol w
5|2]-2|1|0]3
% 1
6|-3/-3| 03«2

Lecture 9 -

Multiple matching
with same score

- ACGCTG
CATG- T -

>
ON®.
> o
O
— —

OO O

T

>
O
OO
> 0O
— —

T

score=3x2+4x(-1)
=2

Dynamic Programming, PQ-trees 30

Exercise

* Find an optimal approximate matching for
~-AGTTC
~-ACTATC

0

(>
N[O N
w|— w
1N -
o |— G
> 0O

ok~ wWDNELO
0O—-0>
ANANEE

Lecture 9 - Dynamic Programming, PQ-trees

31

Approximate String Searching

* |Input: Query string Q and target string T in an
alphabet > and a scoring function g, and a
minimum score r.

e Output: The set of k such that for some 1 <k
score(Q,T[i..k]) > r. Thatis, an approximate
match of some substring of T that ends at
Index k has a score of at least r.

— score(X,Y) is the maximum score for all matchings
between X and Y.

Lecture 9 - Dynamic Programming, PQ-trees 32

Search Algorithm

* We change the previous dynamic program

slightly.
MIi.0] = > 0(QIK].-)
M[O, |] :k()—1 We don’t care where the match begins in T
MI[I, |] = max{
M[I-1,)-1]+o(Q[], ThI),
M[i-1,j]+0(Q[i],-),
MII,j=1]+o(= ThD}

Choose all k such that M[m,k] > r where m is the length of Q.

Lecture 9 - Dynamic Programming, PQ-trees 33

Example of Approximate Matching

scoring function

Q = AGIA r=5 +2 for exact match
T = AGATCGTAGT -1 otherwise

012345678910
AGATCGTAGT
0 0/,0/{0]0|O0O|0O0|]O0O|O0|0O0]0O]|O
1 aAl-1l2]1]2][1|o]-1]-1]2]1]0
> gl2/1]a|3|2]|1]2]1]1]4]3
3 T7T/3/0/3/3[5/4|3/4|3|3]|6
4 Al-4l-1]2|5|4]4|3]/3|6|5]5

output is 3, 8, 9, 10

Lecture 9 - Dynamic Programming, PQ-trees 34

—1 O

Recovering the Matchings

0123456789 10
AGATCGTAGT
0 0/0/0|0I0]O0O|0O0}|0O0O|0O0]0]O0
-\2 1\2*1*0 -1 -1\2 1,0
AGTA 1 Al LS LS L8
ACATCGTAGT 2 G|-2|1 ék 3121 2\1 1 4\3
3 T/-3]0(3[3|5|4(3|4/3|3]|6
* * A
4 A|-4/-1/2|5|4|4[3|3/6+45|5
Q AGTA Q A--GIA-
T AGA 1-3 T ATCGIAG 3-9
Q A -GIA Q AGTA
T ATCGTA 3-8 T AGI- 8-10

Lecture 9 - Dynamic Programming, PQ-trees

35

Notes on Approximate Matching

 Time complexity O(mn)
e Storage complexity O(mn)

— Storage in the dynamic program can be reduced
to O(m+n) by just keeping the frontier.

— Recovering the matching can be done in time
O(m+n) cleverly.

Lecture 9 - Dynamic Programming, PQ-trees

36

FASTA and BLAST

e Two of best known approximate search algorithms for
DNA database searching

e Both use the idea of exclusion search
— Parameter k for number of possible errors
— Exact search on k+1 substrings. At least one must succeed

k=4 search string

e

1. Find all the exact matches for at least one of the strings
2. For each such match do an approximate matching

Lecture 9 - Dynamic Programming, PQ-trees 37

k

Example
=2

AGTTATGCC ——— AGT TAT GCC

| |
TTAGACGTTCATGACCTAGTTTAG CTATGAG|AGTTATG

Dynamic Programming O(mn)
Exclusion Search O(sm?+ n)

m search string length

n database length
S number of successes in exact search

Lecture 9 - Dynamic Programming, PQ-trees

38

Dynamic Programming

A strategy for designing algorithms.
A technique, not an algorithm.

The word “programming” is historical and predates
computer programming.

ldeal when the problem breaks down into recurring
small sub-problems.

Lecture 9 - Dynamic Programming, PQ-trees

39

Longest Common Subsequence

e Longest common subsequence (LCS) problem:

— Given two sequences X[1..m] and y[1..n], find the longest
subsequence which occurs in both (not necessarily
contiguous).

— Example:x=ABCBDAB,y=BDCABA
— B C and A A are both subsequences of both

« What is the LCS? BCAB, BCBA

— Brute-force algorithm: For every subsequence of x, check if
It's a subsequence of y

 How many subsequences of x are there?
* What will be the running time of the brute-force alg?

Lecture 9 - Dynamic Programming, PQ-trees 40

LCS Algorithm

e Brute-force algorithm: 2™ subsequences of x
each takes O(n) to search in y: O(n 2M)

 We can do better: for now, let’s only worry
about the problem of finding the length of the
LCS

— When finished we will see how to backtrack from
this solution back to the actual LCS.

* Notice LCS problem has optimal substructure
— Subproblems: LCS of pairs of prefixes of x and y

Lecture 9 - Dynamic Programming, PQ-trees

41

Finding LCS Length

* Define c|i,j] to be the length of the LCS of
X;=x[1..i] and Y;=y[1..]]
— What is the length of LCS of x and y?

c[m,n]

e Theorem:
. [cli=1,j-1]+1 it x[1] = y[l,
U= max(eli,j-11.cli-1,j) otherwise

Lecture 9 - Dynamic Programming, PQ-trees 42

LCS Recurrence

.. |c[i-1,j-1]+1 It x[1] = y[],
cli.] "{ max(cli,j-1],c[i-1,i) otherwise

Proof: When calculating cfi,j], there are two
cases to consider:

* First case: x[i]=y[j]: one more symbol in
strings X and Y matches, so the length of
LCS X, and Y; equals to the length of LCS of
smaller strings X, ; and Y, , , plus 1.

Lecture 9 - Dynamic Programming, PQ-trees 43

LCS Recurrence

. feli-1,j-1]+1 if x[i] = yil,
cli,] —{ max(c[i,j—1],c[i—-1,j]) otherwise
« Second case: X[i] # Y[j]

e As symbols don’t match, our solution is not
improved, and the length of LCS(X;, Y)) Is the
maximum of LCS(X;, Y ;) and LCS(X4,Y))

Why not just take the length of LCS(X,,, Yi) ?

Lecture 9 - Dynamic Programming, PQ-trees 44

| CS recursive solution

.. |cli-1,j-1]+1 it X[1] = y[l,
cli.] "{ max(cli,j-1].c[i-1,i) otherwise

Why not just take the length of LCS(X; 4, Y ;) ?
Answer: Let x=abc y=db
c[3,2]=max(c[3,1], c[2,2])=max(0,1)=1

c[3,2]% c[2,1]=0

Lecture 9 - Dynamic Programming, PQ-trees 45

Exercise: Write the Program

1. m =length(X) // # of symbols in X

2. n =length(Y) // # of symbols in Y
3.fori=1tom c[i,0]=0 // special case: Y
4. forj=1ton c[0,)]=0 // special case: X,
Finish it

Lecture 9 - Dynamic Programming, PQ-trees 46

Exercise: Create a Dynamic Program

Design a dynamic program for knapsack
oroblem.

nput: (S4,C,), (S5,C5),..., (S,Cp)y S

Output: find a subset X of {1,2,...,n} such that

Y 's,<S and) c, is maximized

ILIX X

Hint: For 1 < n and k < S recursively define

c(i,k) :max{Zcj : X 0{1,2,...,i}and ZSJ' =k}

Lecture 9 - Dynamic Programming, PQ-trees 47

DNA Seguence Reconstruction

 DNA can only be sequenced in relatively small
pieces, up to about 1,000 nucleotides.

By chemistry a much longer DNA sequence can be
broken up into overlapping sequences called clones.
Clones are 10’s of thousands of nucleotides long.

DNA

 ————— clones

Lecture 9 - Dynamic Programming, PQ-trees 48

Tagging the Clones

* By chemistry the clones can be tagged by identifying
a region of the DNA uniquely.

E G FH A | B D C
e R
5 S 7
: : b b ——

8 10 clones

« Each clone is then tagged correspondingly.

Lecture 9 - Dynamic Programming, PQ-trees

49

Problem to Solve

* Given a set of tagged clones, find a
consistent ordering of the tags that

determines a possible ordering of the DNA

molecule.

iInput

clone tag

{E, G} output
{F, G, H}

{E, G} 5— 255
{A, H, 1}

{B, D}

. {F, H}

{A, B, D, I}

10. {C, D}

©CooNOoOOOhWNRE

Lecture 9 - Dynamic Programming, PQ-trees

{A, 1} EGFHAIBDC
{C, D} g s, 4

50

Contiguous Ordering Solutions

Contiguous ordering problem Solution

U={A,B,C,D,E F G,H,I} EGFHAIBDC
S ={E, G} - -

{F, G, H} -

{A 1}
{C, D} |
{E, G} Alternate Solutions

E’é g} } iInterchange

{F. H) | and A

{A, B, D, I} reversal CDBIAHFGE
{C, D}}

EGFHIABDC

CDBAIHFGE

Lecture 9 - Dynamic Programming, PQ-trees 51

Linear Time Algorithm

e Booth and Lueker, 1976, designed an
algorithm that runs in time O(n+m+s).

— n is the size of the universe, m is the number of
sets, and s is the sum of the sizes of the sets.

It requires a novel data structure called the
PQ tree that represents a set of orderings.

 PQ trees can also be used to test whether an
undirected graph is planar.

Lecture 9 - Dynamic Programming, PQ-trees 52

PQ Trees

« PQ trees are built from three types of nodes

P node Q node leaf
A/ QX |
Children can Children can Each leaf has
be reordered. be reversed. a unique label.

Lecture 9 - Dynamic Programming, PQ-trees

Example PQ-Tree

o

F C

A /é\ E

B D

The frontier of T defines the ordering F(T) = FCABDE, just read
the leaves left to right.

T’ is equivalent to T if T can be transformed into T by reordering
the children of P nodes and reversing the children of Q nodes.

Lecture 9 - Dynamic Programming, PQ-trees 54

Equivalent PQ Trees

TYT

~ N

B D

FCABDE FEBDAC

Lecture 9 - Dynamic Programming, PQ-trees

55

Orderings Defined by a PQ Tree

 Given a PQ tree T the orderings defined by T

IS

— PQ(T) ={F(T") : T is equivalent to T}

o

F C

()
AN

B

D

There are 6 x 2 x 2 = 24 distinct
orderings in PQ(T).

Generally, ifa PQ tree T has q Q
node and p P nodes with number
of children c,, c,, ..., ¢, then the
number of orderings in PQ(T) is
29¢c i eyt cpl.

nNl=1x2XxX...xXn

Lecture 9 - Dynamic Programming, PQ-trees 56

PQ Tree Solution for the Contiguous
Ordering Problem

e Input: Auniverse UandasetS={S,, S,, ..., S}
of subsets of U.

o Output: A PQ tree T with leaves U with the
property that PQ(T) is the set of all orderings of U
where each set in S Is contiguous In the
ordering.

Lecture 9 - Dynamic Programming, PQ-trees 57

Example Solution

U ={AB,C,D,E,F}
S ={{A,C,E}, {A,C,F}, {B,D,E}}

LEA

B D

There are 8 orderings that are possible in keeping
each of these sets contiguous.

Lecture 9 - Dynamic Programming, PQ-trees

58

PQ Tree Restriction

e LetU={A A,,...A .}, S={ALA,,.... All,and T a
PQ tree.
 We will define a function Restrict with the

following properties:
— Restrict(T,S) is a PQ tree.
— PQ(Restrict(T,S)) = PQ(T) intersect PQ(T’) where

-®

A A

Al A

Lecture 9 - Dynamic Programming, PQ-trees 59

High Level PQ tree Algorithm

Input is U = {A;,A,,...,A,}, and subsets S,, S,,
ey S, OF UL

Initialization:

— T = P node with children A, A,, ..., A,

Calculate m restrictions:

—forj=1tomdo
T = Restrict(T,S))

At the end of iteration k:

— PQ(T) = the set of ordering of U where each set S,,
S,, ..., S, are contiguous.

Lecture 9 - Dynamic Programming, PQ-trees 60

Marking Nodes

 Given aset S and PQ tree T we can mark
nodes either full or partial.
— A leaf is full if it iIs a member of S.
— A node is full if all its children are full.

— A node is partial if either it has both full and non-
full children or it has a partial child.

— A node is doubly partial if it has two partial
children.

Lecture 9 - Dynamic Programming, PQ-trees

61

Marks of Nodes

Mark the leaves in S full.

Bottom up mark the nodes full or partial. I:I O

The members of S will become contiguous. Full

S ={AC,F.H,} i O
left partial

® o Il NC

/ \ & \ right partial
Bl D] [E] © G

Lecture 9 - Dynamic Programming, PQ-trees 62

Structure of the Marked PQ Tree

partials with root

exactly one \

partial child

Key Node

possibly doubly
partial

right partial V

left partial

Full

Lecture 9 - Dynamic Programming, PQ-trees

Restrict(T,S)

« Mark the full and partial nodes from the
bottom up.

— In the process the marked leaves become
contiguous.

* Locate the key node.

— Deepest node with the property that all the full
leaves are descendents of the node.

* Restrict the key node.

— In the process of restricting the key node we will
have to recursively direct partial nodes.

— Directing a node returns a sequence of nodes.

Lecture 9 - Dynamic Programming, PQ-trees

64

Restricting a P Node with Partial Children

left partial

right partial
S

fb}|/' l restrict a P node
u

=2 A

Lecture 9 - Dynamic Programming, PQ-trees 65

——
direct then / A

attach

Restricting a P node
with no Partial Children

7 l restrict a P node

XZ\A

Lecture 9 - Dynamic Programming, PQ-trees

66

Restricting a Q node

l restrict a Q node

JorIutIwl

direct then
attach

Lecture 9 - Dynamic Programming, PQ-trees

67

Directing a P Node

S —

_ Directing a node
left direct a P node l produces a sequence
of nodes.
<

A

Lecture 9 - Dynamic Programming, PQ-trees 68

Directing a Q Node

S —

l left direct a Q node

A AR AA

Lecture 9 - Dynamic Programming, PQ-trees

69

Example (1)

U ={AB,C,D,E,F,G,H,I,J}
S, = {A,C,E,G,I}

Lecture 9 - Dynamic Programming, PQ-trees

70

Example (2)

U ={AB,C,D,E,F,G,H,I,J}
S, = {A,C,E,G,I}

restrict P node
—_—>

ot

special case because
no partial child.

Lecture 9 - Dynamic Programming, PQ-trees

71

Example (3)

U ={AB,C,D,E,F,G,H,I,J}
S, = {C,D,F,G,1,J}

mark

CE\GI AlE L}

Lecture 9 - Dynamic Programming, PQ-trees

72

Example (4)

U={AB,CD,EFG,H,IJI}
restrict P node ﬁ\
R
BllH
BllH

S, ={C,D,F,G,,3}
L\- !
E L
AllE D)
Lecture 9 - Dynamic Programming, PQ-trees 73

Example (5)

U ={AB,C,D,E,F,G,H,I,J}
S, = {C,D,F,G,1,J}

/@\ direct P node /@\

AN LAL

mi—

Lecture 9 - Dynamic Programming, PQ-trees 74

Example (6)

U ={AB,C,D,E,F,G,H,I,J}
S, = {C,D,F,G,1,J}

N

Bl H

AN 2 VAN

S

AD O

\

Example (7)

U ={AB,C,D,E,F,G,H,I,J}
S, = {A,B,E,G}

BllH

N

D

F

J

ID\
=

.

Lecture 9 - Dynamic Programming, PQ-trees

76

Example (8)

U ={AB,C,D,E,F,G,H,I,J}
S, = {A,B,E,G}

restrict P node

 m—

O

Joibuman

No P node AE

needed here

Lecture 9 - Dynamic Programming, PQ-trees 77

Example (9)

U ={AB,C,D,E,F,G,H,I,J}
S, = {A,B,E,G}

m

direct Q node
<=
r
O

\

N

2

C

D

F

J

"2 55

Lecture 9 - Dynamic Programming, PQ-trees 78

Example (10)

U ={AB,C,D,E,F,G,H,I,J}

S, = {A,B,E,G}
/Q\:LE' /@\H
1 WASS NN B

Lecture 9 - Dynamic Programming, PQ-trees 79

Example (11)

U ={AB,C,D,E,F,G,H,I,J}

S, = {AB,E,G}
‘b WMGNE GG Wk

Lecture 9 - Dynamic Programming, PQ-trees 80

Example (12)

U ={AB,C,D,E,F,G,H,I,J
S, = {A,C,E,G,I}
S, ={C,D,F,G,1,J}

S; ={AB,E,G} Q\

FIIN

2

Or—

Lecture 9 - Dynamic Programming, PQ-trees

81

Exercise

e Restrict with to make {A,B,D,E,G} contiguous

G| |H |

Lecture 9 - Dynamic Programming, PQ-trees

82

Linear Number of Nodes Processed

 Let n be the size of the universe, m the
number of sets, and s the sum of the sizes of
the sets.
— Number of full nodes processed < 2s.
— Number of key nodes processed = m.

— Number of partial nodes with partial children
processed below the key node <m + n.

— Number of partial nodes with no partial children
< 2m.

— Number of partial nodes processed above the key
node <m + n.

Lecture 9 - Dynamic Programming, PQ-trees 83

Number of Processed Nodes Amortized

partials with

exactly one

partial child
< m+n

root

Key Nodes

n size of universe m

m number of sets

s sum of size of sets partials with

partial children
< m+n
partials with

Full no partial children
<2s <2m

Lecture 9 - Dynamic Programming, PQ-trees 84

Partials with Partial Children Below
the Key Node

 Amortized complexity argument.

e Consider the quantities:

— g = number of Q nodes,
cp = number of children of P nodes.

— We examine the quantity x =g + cp
— X Is initially n and never negative.
— Each restrict of a key node increases x by at most 1.

— Each direct of a partial node with a partial child
decreases x by at least 1.

— Since there are m restricts of a key node then there are
most n + m directs of partials with partial children.

Lecture 9 - Dynamic Programming, PQ-trees 85

Restricting a P Node with Partial Children

l restrict a P node

Q change inq + cp is

W at most +1.
— > —

A O A

Lecture 9 - Dynamic Programming, PQ-trees 86

Restricting a P node
with no Partial Children

N l restrict a P node changeinq+cpis
full exactly +1.

=

Lecture 9 - Dynamic Programming, PQ-trees 87

Restricting a Q node

restrict a Q node l no change in g, cp

JorIutIwl

direct then
attach

Lecture 9 - Dynamic Programming, PQ-trees

88

Directing a P Node

S —

Assume partial child

l left direct a P node changeing+cpis-1

A

Lecture 9 - Dynamic Programming, PQ-trees 89

Directing a Q Node

mg

Ieft direct a Q node

A AR AA

changeinq+cpis-1

Lecture 9 - Dynamic Programming, PQ-trees 90

PQ Tree Notes

In algorithmic design only a linear number of
nodes are ever processed.

Designing the data structures to make the
Inear time processing a reality Is very tricky.

PQ trees solve the idealized DNA ordering
oroblem.

n reality, because of errors, the DNA
ordering problem is NP-hard and other
techniques are used.

Lecture 9 - Dynamic Programming, PQ-trees

91

Example of Data Structure Trick

* Linking the children of a Q node

son parent parent daughter
WYVYVYVWS.
o5, brother Linking of siblings can be in any order.
L Middle children don’t know parents.
< Sister

End children know parents.

Lecture 9 - Dynamic Programming, PQ-trees 92

